
Subject: Bug in sigleton classes in fairbase/base
Posted by Bertram Kopf on Tue, 27 Oct 2009 13:11:47 GMT
View Forum Message <> Reply to Message

Hi,
in the "base" directory there is the attempt to provide a couple of singleton classes (e.g.
FairRootManager, FairRun, FairRunSim, etc.). Due to the fact that the relevant constructors
are defined as public, these singletons are not properly implemented. For those classes, it is
possible to create more than only one object and this can therefore cause some troubles. For
singletons, it is a must to define the constructors in the protected or private region.
Therefore I would like to ask the relevant developers to fix this bug as soon as possible.

Thanks in advance,
Bertram.

Subject: Re: Bug in sigleton classes in fairbase/base
Posted by Mohammad Al-Turany on Tue, 27 Oct 2009 13:32:38 GMT
View Forum Message <> Reply to Message

Hi Bertram,

Thanks for having time to look into this! I know that in the design pattern book, there is this nice
statement that the ctor of a singleton should be privet, and it is better to put it privet I agree. but
I do not agree that you can create these classes more than once, there is protection in the ctor
which prevent this, so I am wondering how could you create any of these more than once! did
you try it?

the only reason that we kept this attempt to write singletons as it is that if we put the ctor as
privet then you have to call always the instance so nobody can call new FairRun for example
directly and this to be changed in all macros. Anyway I agree again that in the holy book of
design pattern it is written that it should be privet but I do not see any problem of the protection
we have and the main thing is to have a singleton that cannot be crated more than once and
this is the case now. So when I will have time I will change it but now it has absolutely no
priority to do this.

regards

Mohammad

Subject: Re: Bug in sigleton classes in fairbase/base
Posted by Bertram Kopf on Tue, 27 Oct 2009 14:09:52 GMT
View Forum Message <> Reply to Message

Hi Mohammad,
Mohammad Al-Turany wrote
... but I do not agree that you can create these classes more than once, there is protection in
the ctor which prevent this, so I am wondering how could you create any of these more than
once! did you try it?

Page 1 of 2 ---- Generated from GSI Forum

https://forum.gsi.de/index.php?t=usrinfo&id=431
https://forum.gsi.de/index.php?t=rview&th=2610&goto=9626#msg_9626
https://forum.gsi.de/index.php?t=post&reply_to=9626
https://forum.gsi.de/index.php?t=usrinfo&id=93
https://forum.gsi.de/index.php?t=rview&th=2610&goto=9628#msg_9628
https://forum.gsi.de/index.php?t=post&reply_to=9628
https://forum.gsi.de/index.php?t=usrinfo&id=431
https://forum.gsi.de/index.php?t=rview&th=2610&goto=9629#msg_9629
https://forum.gsi.de/index.php?t=post&reply_to=9629
https://forum.gsi.de/index.php

I didn't look closer into the ctor. You are right, there is a protection against it. If you try to create
a second object , then the application will crash.
But if you would like to call the function "Instance()" without creating the object before, one gets
back 0 pointer. And this definitely is not the idea of a singleton.

Mohammad Al-Turany wrote
the only reason that we kept this attempt to write singletons as it is that if we put the ctor as
privet then you have to call always the instance so nobody can call new FairRun for example
directly ...
Mohammad

But exactly this should be avoided in a singleton. The only way to get access to a singleton
object should be possible via a static instance function. The singleton itself has to take care of
calling its own ctor.
Therefore I would prefer to follow the recommendations of object oriented design patterns.

Cheers,
Bertram.

Subject: Re: Bug in sigleton classes in fairbase/base
Posted by Mohammad Al-Turany on Tue, 27 Oct 2009 14:27:50 GMT
View Forum Message <> Reply to Message

Hi Bertram,

As I said before, it is nicer to have the ctor privet, but it is not a really a bug that change
behavior of the singleton. in the compiled code you always use the instance and this is
working, all these singleton classes are some kind of managers that have to be created from
the macro (RunAna and RunSim) or by the framework itself (IO manager) and then the user
uses the instance.

Quote:But exactly this should be avoided in a singleton. The only way to get access to a
singleton object should be possible via a static instance function. The singleton itself has to
take care of calling its own ctor.
Therefore I would prefer to follow the recommendations of object oriented design patterns.

The design pattern book is simply some recommendations for implementations, and does not
present the object oriented standard, even C++ itself is not 100% object oriented (and this
make it usable in contrary to JAVA or smaltalk) . Anyway when I have time I will change it, but
not now.

regards

Mohammad

Page 2 of 2 ---- Generated from GSI Forum

https://forum.gsi.de/index.php?t=usrinfo&id=93
https://forum.gsi.de/index.php?t=rview&th=2610&goto=9630#msg_9630
https://forum.gsi.de/index.php?t=post&reply_to=9630
https://forum.gsi.de/index.php

