
Subject: [FIXED] Memory leak with TClonesArray and std::vector
Posted by Klaus Götzen on Fri, 23 Aug 2013 07:36:11 GMT
View Forum Message <> Reply to Message

Hi,

this is more a ROOT related question, but maybe somebody from this club has an idea or
knows about it.

The problem is that I observed quite a severe memory leak (just looking with 'top' how memory
consumption of the job develops), apparently because the RhoCandidate stores the daughter
pointers in a std::vector<RhoCandidate*>.

I isolated the problem in a short ROOT macro looking like:

#include "TClonesArray.h"
#include <vector>
#include <iostream>

// very simple class to be used with a TClonesArray
class MyClass: public TObject
{
public:
 MyClass() {};
 ~MyClass() {};
 std::vector<int> fVec;
 ClassDef(MyClass,1)
};

void testtca(int num=100000)
{	
 TClonesArray *tca = new TClonesArray("MyClass",1100);
	
 for (int i=0;i<num;++i)
 {
 if ((i%100)==0) cout <<i<<endl;
	tca->Clear();
		
	for (int j=0;j<1000;++j)
 {
	 MyClass *c= new ((*tca)[j]) MyClass();
	 c->fVec.push_back(42); // <- THIS IS THE BAD GUY!!1
	 c->fVec.clear();
	}
 }	
}

When you run this with 'root -l -b -q testtca.C+' you will see the memory growing very!! fast (be
careful, you might want to reduce num).

Page 1 of 2 ---- Generated from GSI Forum

https://forum.gsi.de/index.php?t=usrinfo&id=489
https://forum.gsi.de/index.php?t=rview&th=3981&goto=15320#msg_15320
https://forum.gsi.de/index.php?t=post&reply_to=15320
https://forum.gsi.de/index.php

When you comment out the line with 'push_back(42)' it works perfectly well like you would
expect it from a TClonesArray. The interesting part is, that even the 'fVec.clear()' directly after
the push_back does not help at all to avoid the problem (most likely because clear() does not
really release the allocated memory of the vector). And I think even an appropriate cleanup in
the destructor wouldn't really help, since the objects in a TCA are not deleted anyway, right?

I didn't find any way to fix this leak up to now. Does somebody here has an idea how to avoid
that problem? Or a solution for a dynamic container for pointers different from std::vector?

Best,
Klaus

Page 2 of 2 ---- Generated from GSI Forum

https://forum.gsi.de/index.php

