Subject: Re: FairWriteoutBuffer::FilINewData and object ownership (memory
leak)
Posted by Oliver Merle on Thu, 31 Jan 2013 13:24:56 GMT

View Forum Message <> Reply to Message

Thank you, Tobias.

Just as an opinion: the most elegant way - from the beginning - would have been to design
FairWriteoutBuffer as a template FairWriteoutBuffer<t_digit, t_modify_functor > which is
derived from base FairWriteoutBufferBase (<=> your current FairWriteoutBuffer). This way the
compiler would autogenerate the boilerplate code which users currently have to implement.
The only class the user would have to add is a custom modify functor in case he needs one.

The digit at the user side would be allocated on the stack and passed as const t_digit & (-> no
new, no leak). This would decouple user and framework code so that you never run into these
ownership problems.

Nevertheless, it doesn't hurt much to add the classes by hand. | mean ... you don't want to sell
this package and scientists aren't too picky when it comes to copy and paste

Page 1 of 1 ---- Generated from GSI Forum


https://forum.gsi.de/index.php?t=usrinfo&id=1602
https://forum.gsi.de/index.php?t=rview&th=3763&goto=14415#msg_14415
https://forum.gsi.de/index.php?t=post&reply_to=14415
https://forum.gsi.de/index.php

