GSI Forum
GSI Helmholtzzentrum für Schwerionenforschung

Home » PANDA » PandaRoot » EMC » Mass calculation from vector<PndEmcDigi*> in EMC
Re: Mass calculation from vector<PndEmcDigi*> in EMC [message #8605 is a reply to message #8603] Wed, 20 May 2009 13:53 Go to previous message
Bertram Kopf is currently offline  Bertram Kopf
Messages: 110
Registered: March 2006
continuous participant
From: *ep1.ruhr-uni-bochum.de
Hi Donghee,


donghee wrote on Wed, 20 May 2009 12:18


I think that can be also used to separate electron and single photon.



I think, it is in not possible (at least not easy) to seperate electrons from single photons by using only shower shape informations. The shower will be produced in a very similar way via electromagnetic processes and also the complete energy will be deposited for both particles. Therefore the shower shapes look very similar. Hadrons instead lose only a certain fraction of the energy by ionization processes and thus the shape of the shower looks different.


donghee wrote on Wed, 20 May 2009 12:18


Concerning geometry of EMC!
I have learn, current setup of EMC designed with missing region at 142 to 149 degree for theta angle in backward endcap.
I have heard actual design should be slightly different, this missing acceptance will be covered in the future, but it is not introduced just in the MC simulation.
How about the situation for the theta region 142 to 149?
Do you have plan to modify some acceptance for EMC in MC simulation?



This is a question which could answer the relevant EMC hardware group. As far as I know, the design of the backward endcap is still not fixed. It's also not definitely clear how much space can be provided for the endcap. Therefore I think is not unrealistic to simulate with a gap between 142 to 149 degrees. Am I right?

Best regards,
Bertram.
 
Read Message
Read Message
Read Message
Read Message
Read Message
Read Message
Read Message
Previous Topic: Question about GetEnergyCorrected()
Next Topic: forward endcap quest goes on
Goto Forum:
  


Current Time: Tue Feb 07 08:45:28 CET 2023

Total time taken to generate the page: 0.01053 seconds