Timing resolution performance of the PANDA time-of-flight (TOF) detector using Silicon Photomultiplier (SiPM)

Marius Chirita, Lukas Gruber, Gamal Ahmed, Dominik Steinschaden, Ken Suzuki on behalf of the PANDA Collaboration

The PANDA experiment at FAIR situated in Darmstadt, Germany will use proton-antiproton annihilation with a momentum range from 1.5 GeV/c to 15 GeV/c for strong interaction studies. The detector is currently under construction. It will be in operation in 2022-. In order to identify the charged particles accurately and differentiate between subsequent events the detector will need several advanced particle identification systems.

We are working on the development of a barrel time of flight (TOF) detector, which is located in the central region ($20^{\circ}-140^{\circ}$) and covers ~5.7 m² area. It is constituted of 1920 scintillator tiles, each of which has a dimension of 90x30x5 mm³, readout by Silicon Photomultipliers (SiPM). The barrel-TOF detector will be capable of providing a fast and highly accurate event timing. The requirements for the barrel-TOF detector are an intrinsic time resolution below $\sigma = 100$ ps and a geometry which fits along 2 cm in radial direction.

Development of a single tile is in a final phase. After optimizing scintillator material, sensor, wrapping etc., we achieved the best time resolution of $\sigma \sim 50$ ps with 4 Hamamatsu SiPMs S13360-3050-PE connected in series. In this presentation, the final design and its performance of a single tile will be presented.