Progress on the online tracking algorithm

Yutie Liang Jan. 22 2013

Circle transform to CF space \rightarrow Circle

Previous bug: $A(x_0,y_0) \xrightarrow{CF} (x_0/(x_0^*x_0+y_0^*y_0), y_0/(x_0^*x_0+y_0^*y_0)) = B(x_0',y_0')$

Thanks Gianluigi for point this out.

Reason of Pt resolution not improve at large Hough space

Pt resolution at different Hough space

Hough Space	1024 ²	4096 ²	16384 ²	65536 ²
Truth position as input	4.8%	3.3%	3.1%	2.6%
Ideal drift distance as input	5.4%	3.4%	3.0%	2.7%
Realistic drift distance as input	5.3%	3.2%	3.2%	3.2%

Truth position as input: No drift circle, but the accurate position of each point is used. Ideal drift distance as input: The drift circle is perfect. (no error in the drift distance) Realistic drift distance as input: fast approximation from the true distance to the reconstructed one, using Juelich exp curve COSY-TOF

Conclusion:

- 1. The way we deal with drift circle is already very good.
- 2. Pt resolution does not improve at large Hough space, due to error of drift distance

