# Update on secondary track finder

Lia Lavezzi
INFN Pavia

EVO, Pattern Recognition Meeting, January 22, 2013





# Summary

- ❖ Structure to integrate primary and secondary track finder
- ❖ New implementation for secondary track finder
- ❖ New tool for STT

# Prim. & Sec. PR Integration



#### I. Structure to integrate primary and secondary track finder

#### THE IDEA

- ❖ The **primary** track finder in tracking/ uses:
  - MVD, STT, SciTil hits (so far)
  - Conformal Transformation
  - Legendre Transformation (for fitting)
- ❖ The **secondary** track finder (in the new version I am trying) uses:
  - MVD, STT hits (so far)
  - Conformal Transformation
  - Legendre Transformation



they must be integrated



there must be a structure

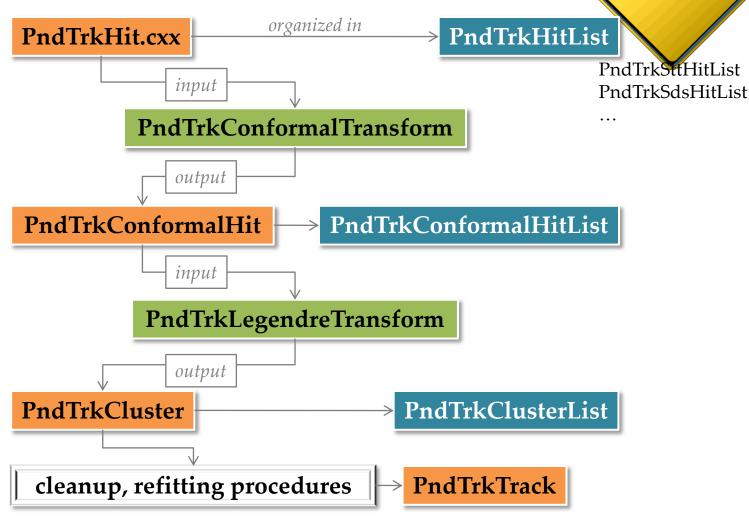
#### Motivations



- ❖ In the primary track finder, the information is contained in several vectors and matrices → the idea is to create objects to contain such information and simplify the code.
- ❖ Though the FairHit already contains some information, some are missing
- ❖ This new structure resembles somehow the PndRecoHit of genfit: one hit type for all the detectors there, one PndTrkHit for all the detectors here.
- ❖ Concerning the output, the need to use the helix parameters, instead of the FairTrackPar at 1° and last hits, comes from the fact that they are easier to handle within the track finding code.

#### Structure

PndTrkLegendreTask


UNDER CONSTRUCTION

**TASK** 

**OBJECT** 

LISTS

**TRANSFORM** 



https://subversion.gsi.de/fairroot/pandaroot/development/lia/tracking/secondary

# PndTrkHit(List)



The TCAs of FairHit are transformed in PndTrkHitLists of PndTrkHit in order to handle all the hits with the same type of object

```
PndTrkHitLists
std::vector<PndTrkHit> hitlist;
```

```
// IREGIONS
// MVD
#define MVDPIXEL 0
#define MVDSTRIP 1
// STT
#define INNER_LEFT 3
#define SKEW_LEFT 5
#define OUTER_LEFT 7
#define INNER_RIGHT 2
#define SKEW_RIGHT 4
#define OUTER_RIGHT 6
...
```

These objects could replace the vectors that now are present in the primary track finder, because they contain all the information of the FairHit + some additional info

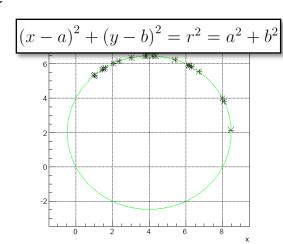
# PndTrkCluster/Track

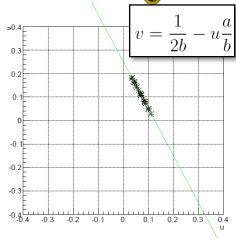


The cluster is just a vector of pointers to PndTrkHit. It can be sorted from a certain 3D point (not yet implemented) fIRegion depends on the regions of the PndTrkHit.

```
PndTrkCluster:
TVector3 fFromPoint;
Int_t fIRegion;
std::vector< PndTrkHit *> hitlist;
```

Once it is fitted, with the helix parameters, the PndTrkTrack is created:

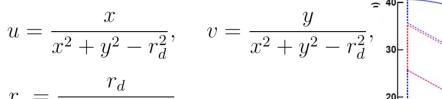

At the very end, the PndTrkCluster is translated to the PndTrackCand and the PndTrkTrack to the PndTrack

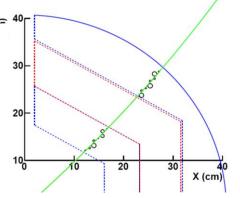

# PndTrkConformalTransform

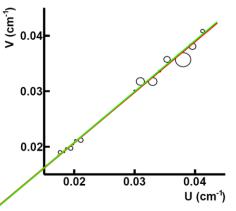
**UNDER** CONSTRUCTION

- ❖ It creates the PndTrkConformalHit
- ❖ It can transform both:
  - points (x, y)

$$u = \frac{x}{x^2 + y^2}, \quad v = \frac{y}{x^2 + y^2},$$



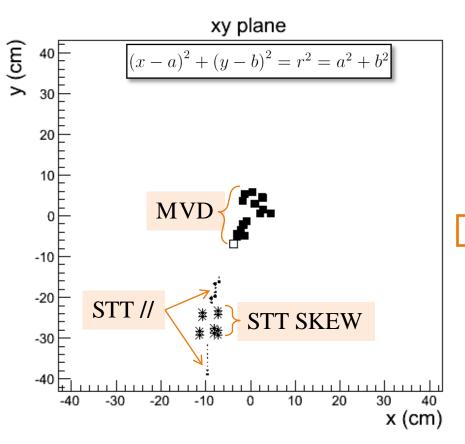


• and circles  $(x, y, r_d)$ 

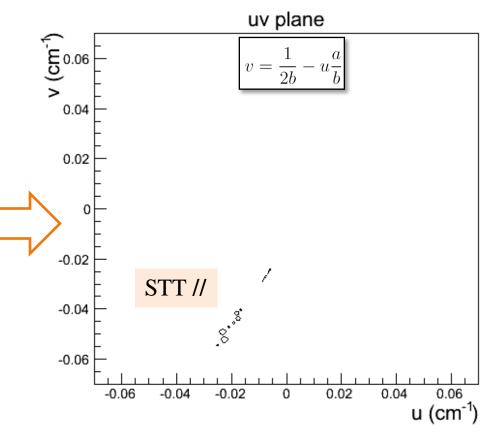
$$u = \frac{x}{x^2 + y^2 - r_d^2},$$
$$r_d$$

$$r_c = \frac{r_d}{x^2 + y^2 - r_d^2}$$





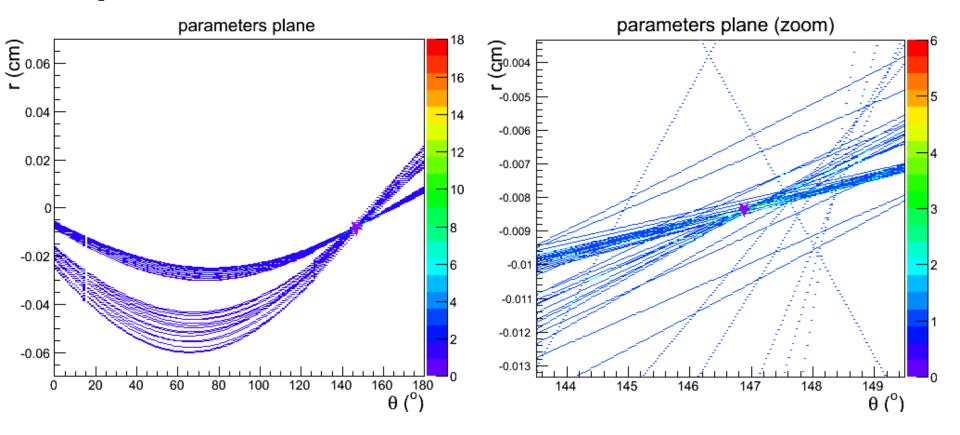




... to a conformal frame, centerd in any (X, Y)

# PndTrkConformalTransform

UNDER CONSTRUCTION

❖ It creates the PndTrkConformalHit






# PndTrkLegendreTransform



- ❖ It fills a TH2F (for now) to use TH2F::GetMaximum() as peak finder.
- **❖** The parameter frame is



## Procedure



#### II. New implementation for secondary track finder

- Up to now the secondary track finder was a sort of adaptation of the primary track finder to tracks not originating from (0, 0, 0).
- \* the impossibility to apply the constraint of being primary creates some problems, mainly:
  - $\clubsuit$  the conformal map transforms circles in straight lines only if the circles pass in (0, 0)
  - $\diamond$  the fit works fine only with a big lever arm, so without the (0, 0) point it might give underestimated radius circles (with GLPK)
- \* new implementation:
  - \* make a translation of the center onto a precise hit, such as an MVD hit, a SciTil hit or the center of the STT in case of small isochrone
  - ❖ apply the Legendre transformation and search for the peak in the accumulation histogram

# PndTrkLegendreTransform



Preliminary Results with 1000 muon track events from IP

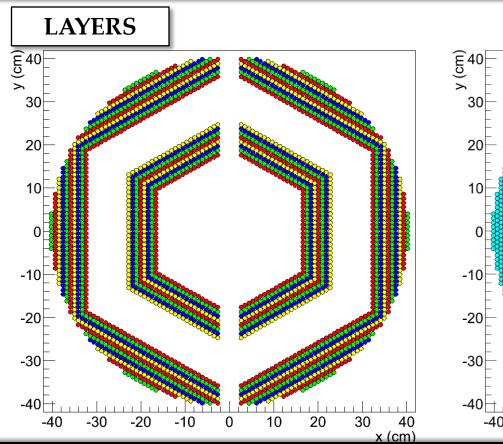
Reconstructable
MC Track
(> 3 STT // hits)

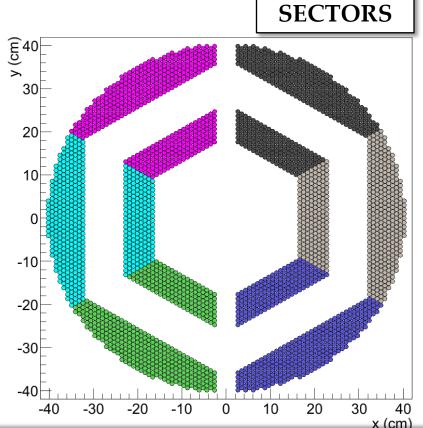
Reconstructed

Not Reconstructed (Missed)

**Good** (>80% of right hits assigned)

Wrong (< 80% of right hits assigned)

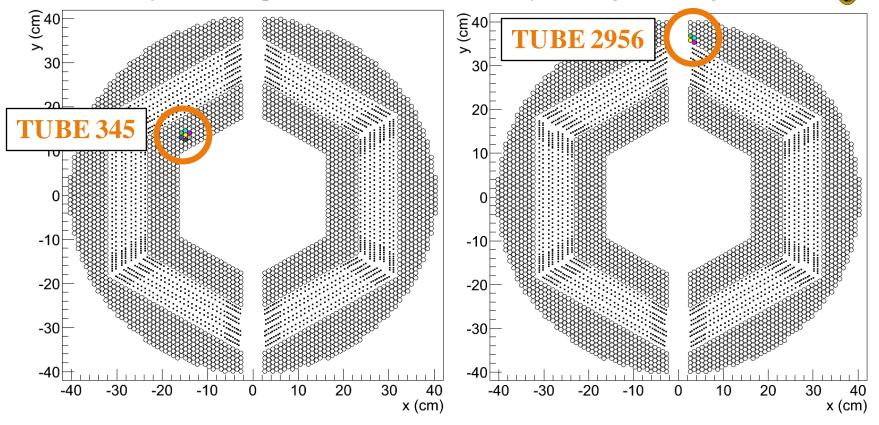

| # Tracks | p (GeV/c) | Good | Wrong | Missed |
|----------|-----------|------|-------|--------|
| 1        | 0.3       | 0.91 | 0.07  | 0.02   |
| 4        | 0.3       | 0.94 | 0.03  | 0.04   |
| 1        | 1         | 0.88 | 0.06  | 0.06   |
| 4        | 1         | 0.88 | 0.04  | 0.07   |


# New functions for STT



Parametrization of the geometry limiting tubes...
... in order to assign to each tube a layerID and a sectorID

#### III. Tool for STT

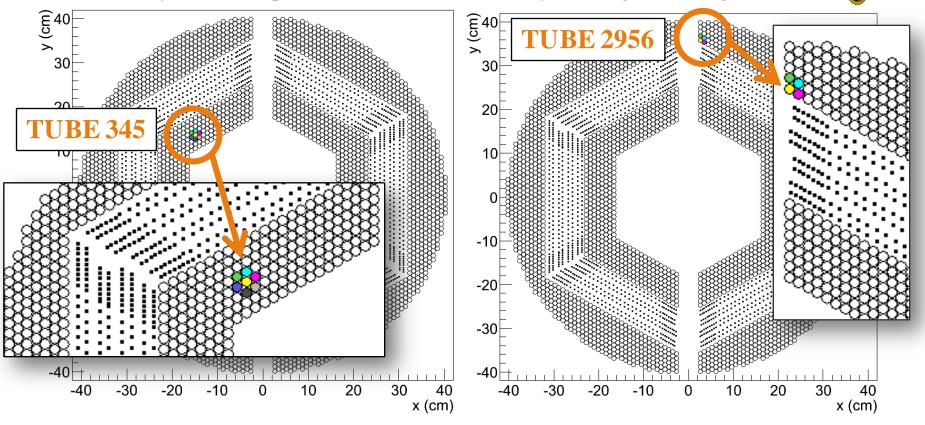





## New functions for STT



In this way it is also possible to obtain an array of neighbouring tubes




... These functions should help in the cleanup of the found tracks

## New functions for STT



In this way it is also possible to obtain an array of neighbouring tubes



... These functions should help in the cleanup of the found tracks

### Conclusion

- Structure to integrate primary and secondary track finder it should permit the integration of the prim. and sec. track finders
- ❖ New implementation for secondary track finder *it has to be completed for prim. and then applied to the sec. tracks*
- ❖ New tool for STT this should help the cleanup and/or the clustering procedure

