Central Tracker Benchmark: $\bar{p} p \rightarrow n\left(\pi^{+} \pi^{-}\right)(\mathrm{n}=1,2)$

Elisa Fioravanti

INFN Ferrara
PANDA Collaboration Meeting - GSI
12th - 16th December 2011

$$
\bar{p} p \rightarrow \pi^{+} \pi^{-}
$$

Single pion track reconstruction

Single pion track reconstruction

Resolution: $(2.15 \pm 0.01) \%$

θ, ϕ resolution

$$
\begin{aligned}
& \sigma(\phi)=(2.185 \pm 0.006) \mathrm{mrad} \\
& \sigma(\theta)=(0.915 \pm 0.002) \mathrm{mrad}
\end{aligned}
$$

Invariant mass distribution

Resolution: $47.97 \pm 0.18 \mathrm{MeV} / \mathrm{c}^{2}$
Efficiency (59.95 ± 0.19)\%

Efficiency=Number of reconstructed events/ number of generated events.

Vertex resolution

$$
\sigma_{x}:(63.34 \pm 0.38) \mu \mathrm{m} ; \sigma_{y}:(68.99 \pm 0.46) \mu \mathrm{m} ; \sigma_{z}:(52.41 \pm 0.20) \mu \mathrm{m} ;
$$

$$
\bar{p} p \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}
$$

Event mixing

Single pion track reconstruction

Resolution: $(1.77 \pm 0.01) \%$

θ, ϕ resolution

(Reconstructed $\phi=\mathrm{MCO})$

$$
\begin{aligned}
& \sigma(\phi)=(3.370 \pm 0.124) \mathrm{mrad} \\
& \sigma(\theta)=(1.512 \pm 0.005) \mathrm{mrad}
\end{aligned}
$$

Invariant mass distribution

The fit is done with a gaussian function plus a first-order polynomial to take into account the combinatioral background.
Efficiency=Number of reconstructed events/ number of generated events.

Vertex resolution

$\sigma_{x}:(56.19 \pm 0.48) \mu \mathrm{m} ; \sigma_{y}:(56.16 \pm 0.48) \mu \mathrm{m} ; \sigma_{z}:(66.46 \pm 0.72) \mu \mathrm{m} ;$

