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Abstract

A treatment of the error propagation due to energy loss during particle track-
ing is given, in view of applications in track following codes. Both ionization
energy loss and bremsstrahlung are considered. Some results in typical model
detectors are given.
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1. Introduction

With the words “track following”, one usually intends two main tasks:

a) to transport the track parameters (particle momentum, position and
direction) from one point to another in the apparatus, forward and
backward. The forward part can be obtained by simply using the Monte
Carlo (MC) codes with the fluctuations switched off. For the backward
tracking (with increasing momentum) only minor modifications of the
MC codes are usually required;

b) to propagate the errors on the track parameters together with the mean
values. This is usually obtained by calculating, step by step, the 5 × 5
error or covariance matrix of the track [1]. The detailed formulae, that
are rather complicated and have been implemented during many years
in the specific codes [2, 5], only recently have been published [3].

The main tasks of track following are the merging of tracks from different
detectors during pattern recognition and track fitting, and the realization of
the prediction step in global track fitting methods as the Kalman or other
filters [7, 8].
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The Monte Carlo and track fitting tasks have been treated jointly by the
CERN community in the nineties. The famous GEANT3 program was used
for the point a), that is for the determination of the track mean values. For
the point b), the routines for the calculation and the transport of the error
matrix, written by the CERN EMC collaboration [2], were interfaced with
the structure, giving rise to a FORTRAN package called GEANE [7].

The great advantage of this structure is that the track following is auto-
matically obtained with the same geometry banks of the Monte Carlo, without
the necessity to write ad hoc codes.

The old GEANT3-GEANE chain can be used also in modern software
platforms, for example in a Virtual Monte Carlo framework [6]. A similar
tool is available also in the GEANT4 framework, as the code GEANT4E
developed by the CMS Collaboration [19].

In this paper we describe a new and general treatment of the error prop-
agation of the energy loss in track following. This could be immediately
implemented in the GEANE and GEANT4E codes, that at present consider
only heavy particles and thick absorbers. We consider mainly the 1/p vari-
able, which is the energy dependent variable of the covariance matrix in most
of track propagation algorithms.

The results are complementary to the analyses made previously for track
fitting algorithms and codes [25, 26, 27].

2. Energy loss fluctuations by ionization

The fluctuations in ionization for one particle of charge z, mass m, velocity
β, are characterized by the parameter κ,

κ =
ξ

Emax

, (1)

which is proportional to the ratio of mean energy loss to the maximum al-
lowed energy transfer Emax in a single collision with an atomic electron:

Emax =
2meβ

2γ2

1 + 2γme/m + (me/m)2
, (2)

where γ = 1/
√

1 − β2 = E/m and me is the electron mass. The parameter
ξ comes from the Rutherford scattering cross section and is defined as [14]:

ξ = 153.4
z2Z

β2A
ρd (keV) , (3)
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where ρ, d, Z and A are the density (g/cm3), thickness, atomic and mass
number of the medium.

The parameter κ takes into account both the projectile energy and the
geometrical thickness of the absorber; it defines univocally the absorber char-
acteristics, that is the straggling conditions [18], that we define as follows:

a) heavy absorbers: κ > 10 and the distribution is Gaussian;

b) moderate absorbers: 0.01 < κ < 10. The distribution follows the func-
tion of Vavilov [18], that tends smoothly to the Gaussian by increasing
the thickness;

c) thin absorbers: κ < 0.01. When the number of collisions Nc > 50, the
distribution follows the Landau function [18];

d) very thin absorbers: Nc < 50 (the condition κ ≪ 0.01 is implicitly
fulfilled). There are no universal straggling functions, but only approx-
imated models [17]. This situation usually occurs in gaseous detectors
at GeV energies.

For the cases a) and b) the straggling problem has a definite solution, both in
simulation and in track following, because the general theory of the moments
of the energy straggling distribution, based on the transport equation [12],
shows that the energy variance is given by:

σ2(E) =
ξ2

κ
(1 − β2/2) = ξ Emax(1 − β2/2) . (4)

Then, taking into account the energy-momentum equation

E2 = p2 + m2 →
dp

dE
=

E

p
=

1

β
,

and the error transformation

σ2(1/p) =

[

d

dp

(

1

p

)]2

σ2(p)

=
1

p4
σ2(p) =

E2

p6
σ2(E) (5)

we obtain the variance of 1/p. Concerning the cases c) and d), for thin and

3



λmax α Mean σλ

11.1 0.90 1.61 2.83
22.4 0.95 2.40 4.23

110.0 0.99 4.19 10.16
200.0 0.995 4.82 13.88
256.0 0.996 5.08 15.76
339.0 0.997 5.37 18.19
507.0 0.998 5.78 22.33

1007.0 0.999 6.48 31.59

Table 1: Result of the integration α =
∫ λmax

λmin

f(λ) dλ of the Landau distribution from
λmin ≃ −3.5 to λmax of the table. The mean and the standard deviation of the truncated
distribution are also shown. We recall that the mean and the variance of the full Landau
distribution are infinite, only the cumulative can be calculated.

very thin absorbers, we note that a rigorous solution exists for the simula-
tion but not for the track following. Indeed, whereas in the simulation the
sampling and the tracking of the δ-electrons reproduces correctly some rare
effects in the detectors or the noise characteristics, in track following the
long tail of the energy lost by the particle, due to the δ-electron emission,
makes the energy straggling variance infinite (for the Landau distribution
[1, 16]) or so big (in very thin absorber models [17]) that the uncertainty in
the track momentum could be meaningless, because these fluctuations refer
to “enormous” energy losses occurring with very low probability.

Since an universally accepted solution of this problem at present does not
exists, we use some approximations based on truncated distributions.

For the Landau case we use the same method of the simulation codes
GEANT3 and GEANT4 [18, 19]. We consider the Landau variable

λ =
E − 〈E〉

ξ
− (1 − γ) − β2 − ln κ , (6)

where E is the particle energy, γ = 0.57725 is the Euler’s constant, and we
cut the Landau distribution to a λmax value so that, if only values λ < λmax

are accepted, the average value of the distribution is:

〈λ〉 = −(1 − γ) − β2 − ln κ . (7)

In tis way the average of the λ fluctuations remains consistent with the energy
loss mean value 〈E〉. A parametric fit to the universal Landau distribution
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gives for λmax the following formula [18, 19]:

λmax = 0.60715 + 1.1934 〈λ〉 +

(0.67794 + 0.052382 〈λ〉) exp(0.94753 + 0.74442 〈λ〉) , (8)

To find an effective variance to be used in track following, we use an inter-
polation formula of the values of tab 1. Then, from eq. (6), for the Landau
case we assume:

σ(E) = ξ σλ . (9)

For example, for α = 0.95 we have, from tab. 1, σ(E) = 4.23 ξ.
In the case of very thin absorbers, the difficulty is due to the non existence

of a straggling density in a closed analytical form [17]. In this case we decided
to use a variance value obtained from the Urban model [20], which is one
of the models used to sample the energy lost by the particle in very thin
absorbers both in GEANT3 and GEANT4 [18, 19].

The Urban model is based on the empirical definition of excitation and
ionization macroscopic cross sections, defined as follows [20]:

- excitation macroscopic cross sections Σ1 and Σ2:

Σi = C
fi

Ei

ln(2mβ2γ2/ei) − β2

ln(2mβ2γ2/I) − β2
(1 − r) , i = 1, 2

where:

I = 16 Z0.9 (eV) , f2 =

{

0 ifZ ≤ 2
2/Z ifZ > 2

,

e2 = 10 Z2 (eV) , e1 =

(

I

ef2

2

)1/f1

,

f1 = 1 − f2 , r = 0.4 , C =
〈E〉

∆x
,

and 〈E〉 ≡ (dE/dx) ·∆x is the energy lost in the absorber of thickness
∆x. The parameter r is the fraction of the ionization over the excitation
and is usually set around 0.4.

- ionization macroscopic cross section Σ3:

Σ3 = C
Emax

I(Emax + I) ln((Emax + I)/I)
r
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- number of total collisions Nc:

Nc = (Σ1 + Σ2 + Σ3)∆x = N1 + N2 + N3 . (10)

- total energy lost:

E = (Σ1e1 + Σ2e2 + Σ3E3)∆x (11)

= N1e1 + N2e2 + N3E3 ,

where e1 and e2 are the two fixed excitation energies of the model
and E3 is the energy lost by δ-electron emission. This is a stochastic
quantity that follows approximately the distribution [20]:

E3 ∼ g(E) =
I(Emax + I)

Emax

1

E2
, (12)

I < E < Emax + I .

In GEANT3 and GEANT4 the energy E is obtained by eq. (11) by sampling
N1, N2 and N3 from the Poisson distribution and E3 from g(E). Therefore,
the sampling of the excitation energy is

Ee = N1e1 + N2e2 , (13)

with e1 and e2 are constant and N1, N2 are sample from the Poisson distri-
bution.

The delta ray ionization energy is sampled by inversion of the cumulative
function of the distribution of eq. (12):

E3 =

N3
∑

j=1

I

1 − Rj(Emax/(Emax + I))
, (14)

where Rj is a random number uniformly distributed in [0, 1]. The Urban
model gives good results when compared with more detailed calculations
with a photoionization absorption model [20], which gives results in good
agreement with the experimental data [21].

We checked the Urban model with a direct simulation in a 1 cm thick
90% Ar-10%CO2 gas mixture at NTP. We sample from the exponential dis-
tribution the point where an electron cluster is generated. Then the number
of electrons in the cluster is sampled. After 1 cm, we have the number of free
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Figure 1: Energy loss of 1 GeV pion traversing a 1cm of 90% Ar 10% CO2 gas mixutre at
NTP. Solid line: Urban distribution; dashed line: specific simulation model; dotted line:
Landau distribution,

electrons generated. By knowing the mean value of the energy spent per free
electron (to create a ion pair), the overall energy loss of the projectile on the
whole path can be calculated. The number of clusters/cm is taken from ref.
[24] (25 for Ar and 35.5 for CO2), whereas the cluster size distribution is
taken from [22] for Ar and from [23] for CO2. The mean energy lost per ion
pair is assumed to be 27 eV for Ar and 33.5 eV for CO2 [24]. We compared
the Urban model and the simulation for a variety of projectiles and energies
(see for example fig. 1) and found that the Urban model reproduces well the
energy loss in very thin absorbers.

The Urban distribution has finite mean and variance, which includes (un-
likely) strong fluctuations: for example, for 1 GeV pions in a 1 cm thick Ar
layer, we have 〈E〉 ≃ 2.7 keV, Emax ≃ 66 MeV and a standard deviation
of about 80 keV due to the δ-electron tail. We find now the expression of
this standard deviation, as a function of a truncation parameter δ, which is
the fraction of the area considered of the δ-ray energy distribution. We can
write:

I(Emax + I)

Emax

∫ Eδ

I

1

E2
dE =

(Emax + I)

Emax

Eδ − I

Eδ

= δ ,
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hence:

Eδ =
I

1 − δ Emax/(Emax + I)
. (15)

When δ = 1, the whole distribution is considered, including fully the δ-
electron tail and Eδ = Emax + I, in agreement with (12).

The mean and variance of the δ-ray energy distribution are:

〈E3〉 =
I(Emax + I)

Emax

∫ Eδ

I

1

E
dE

=
I(Emax + I)

Emax

ln

(

Eδ

I

)

,

〈

E2

3

〉

=
I(Emax + I)

Emax

∫ Eδ

I

dE

=
I(Emax + I)

Emax

(Eδ − I) ,

σ2[E3] = < E2

3
> − < E3 >2 . (16)

To find the variance of the Urban distribution, to be used in track following,
we have to apply the error propagation to eq. (11), where a random sum is
present. If N1, N2, N3 are Poisson variables and E3 is a random variable
which follows the δ-ray energy distribution, we obtain:

σ2

λ(E) = 〈N1〉 e2

1
+ 〈N2〉 e2

2
+ 〈N3〉 〈E3〉

2

+σ2[E3] 〈N3〉 (17)

where the last two terms come from the variance of a random sum of random
variables Xi, when the upper index N follows the Poisson distribution [4]:

σ2

[

N
∑

i

Xi

]

= 〈X〉2 〈N〉 + σ2[X] 〈N〉 .

The variance of eq. (17) depends of the cut parameter δ. We decided to
use, for κ ≃ 0.01 and Nc ≃ 50 (see eq. (10)), a δ value that gives the
same variance of the truncated Landau distribution. This matching, for the
absorbers and thicknesses that we have tried, is assured when δ ≃ 0.9999.
This value, although very near to the unity, corresponds to a non negnligible
cut of the long δ-ray tail of the Urban distribution. For example, for 1 GeV
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absorber energy Heitler equation GEANT3 GEANT4
(GeV) µ σ µ σ µ σ

10 cm Ar 0.5 0.4995 0.0097 0.4995 0.0097 0.4995 0.0105
10 cm Ar 1.0 0.9991 0.0194 0.9991 0.0198 0.9991 0.0203
1 cm Al 0.5 0.447 0.098 0.444 0.100 0.444 0.098
1 cm Al 1.0 0.894 0.195 0.891 0.203 0.891 0.201
1 cm Al 10 9.01 1.95 8.96 2.04 8.95 2.06

Table 2: comparison between the mean energy µ and standard deviation σ (MeV) from
the the GEANT3 and GEANT4 simulated distributions relative to 105 electrons and from
the Heitler formula after passing some absorbers.

pions on a 1cm thick Ar layer, we have σδ = 80 keV for δ = 1 and σδ = 15
keV for δ = 0.9999.

In summary, our method calculates the 1/p variance of eq. (5) with a
variance σ2(E) due to the ionization energy loss calculated as follows:

a) for big and moderate absorbers when κ > 0.01, the variance σ2(E) is
given by eq. (4) (old GEANE method);

b) for thin absorbers, κ < 0.01, when the number of collisions from eq. (10)
is Nc > 50, σ2(E) is given by eq. (9);

c) for very thin absorbers, when κ < 0.01 and Nc < 50, the variance
σ2(E) is given by eq. (17).

3. Energy loss fluctuations by bremsstrahlung

The energy loss by bremsstrahlung becomes the dominant process for
electrons above the critical energy Ec ≃ 800/Z MeV and for muons in dense
media above 10 GeV.

The radiative energy loss straggling distribution for the energy E of a
particle of incident energy E0 on an absorber of thickness x, was first deduced
by Heitler [28], using an approximate expression for the bremsstrahlung cross
section:

f(E) =
1

E0Γ(l)

(

ln
E0

E

) l−1

, l =
x

X0 ln 2
, (18)

where X0 is the radiation length of the absorber and Γ is the gamma function.
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Figure 2: Pull distribution ∆(1/p)/σ for 1 GeV muons after passing through 22 straw tube
layers. Left: Standard GEANE result (RMS≃ 0.3 in the displayed window); right: result
after the modification with δ = 0.9999 (see the text). The region between the vertical
lines has RMS= 1.03.

From eq. (18) one deduces that, if Z = E/E0, − ln Z is Γ-distributed and
that the first two moments and the variance are given by [27, 25]:

〈E〉 = E0

1

2 l
,

〈

E2
〉

= E2

0

1

3 l
(19)

σ2[E] =
〈

E2
〉

− 〈E〉2 = E2

0

(

1

3l
−

1

4 l

)

. (20)

The Heitler distribution (18) gives surprisingly good results when compared
with the full treatments of the bremsstrahlung energy loss as in the simulation
programs GEANT3 [18] and GEANT4 [19] (see tab.2). We note also that
the difference between positrons and electrons is not taken into account by
eq. (18). However, in most cases this effect is less than 1%.

In conclusion, the bremsstrahlung process can be adequately modeled
with the very forward peaked, highly asymmetric and long tailed distribution
of eq (18). It can also be approximated with Gaussian mixtures to be used in
track fitting algorithms [26]. Regarding the track following, the existence of
a finite variance for the energy in principle allows the analytical treatment of
the error propagation of the track parameters. However, the track following is
usually done in term of the 1/p variable instead of E. Neglecting the electron
mass, this means the use of the 1/E variable. Unfortunately, it is easy to
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Figure 3: Values of the standard deviations of the 1/p pull variable as a function of the
truncation parameter δ from eq. (15), for 1 Gev pions traversing a 1 mm thick Al absorbers.

see, from the distribution (18), that this variable has no finite moments: even
〈E−1〉 does not exist.

To overcome this problem, we decided to assign to 1/E an uncertainty
interval

σ[1/E] = 0.5 [1/E2, 1/E1] , where (21)

E2 = Min(E0, 〈E〉 + σ[E]) ,

E1 =

{

〈E〉 − σ[E] if E2 = 〈E〉 + σ[E]
E0 − 2σ[E] if E2 = E0

.

The standard deviation σ[E] comes from eq. (20). In this way the probabil-
ity corresponding to the uncertainty interval of E is the same also for the
uncertainty of 1/E. We found also empirically that this “standard devia-
tion” σ[1/E] can be approximated within 15% for any energy and absorber
thickness with an equation similar to (5):

σ2[1/E] ≃ 1.44
1

〈E〉4
σ2[E] , (22)

where the approximation p ≃ E has been used.
The treatment used here is only approximated. Indeed, the shape of the

bremsstrahlung energy loss distribution is far from gaussian, so that its use
in the Kalman filter is not correct. The standard treatment is in this case to
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Figure 4: Values of the standard deviations of the 1/p pull variable with truncation param-
eter δ = 0.9999 from eq. (15), as a function of the number of the traversed layers. The data
refer to 1 Gev pions traversing layers formed by a 1 mm thick Al (Landau distribution)
and a 1 cm thick Ar gas (Urban distribution) absorbers at NTP.

approximate the distribution as the sum of (at least two) Gaussians, to model
the sharp peak and the flat background. The method is called Gaussian Sum
Filter (GSF) [1, 27, 25, 26]. It must be implemented in our software in the
next future.

4. Results and conclusions

To check the effects of our modifications to the energy straggling in track
following, we used the chain GEANT/GEANE (version 3.21) for simulation
and tracking. The default formula for the energy straggling in GEANE is
given by eq. (4).

For a given quantity x, the results are mainly reported in terms of the
pull distribution (xMC −〈x〉)/σ[x], where 〈x〉 and σ[x] are given by the track
following code.

Firstly, we consider the case of ionization enegy loss in very thin absorbers.
The pull histograms of 1/p in the case of 9 Ar layers 1 cm thick traversed by
1 GeV pions are shown in fig. 1. The uncertainties in energy straggling are
from eq. (4) and from eq. (17). Clearly, the σ from the Urban distribution
gives a better result.

In fig. 3 we explore systematically the behaviour of the σ of the 1/p pull
variable with the truncation parameter δ of the Urban distribution. One sees
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Figure 5: Pull distributons of E (left) and 1/p (right) variables with σ from eqs. (20, 22)
for 1 Gev electrons traversing a 10 mm thick Al layer.

that values δ > 0.995 give resonable results.
In fig 3 we consider the momentum of 1 GeV pions after a 1 mm thick

Al absorber (Landau distribution) and after a very thin absorber formed by
a 10 cm Ar gas layer at NTP (Urban distribution). The results show that
the value δ = 0.9999, that assures a good matching between the Landau and
Urban distributions, give a resonable pull distribution, which remains stable
during the tracking.

Finally, we check the behaviour of track following for electrons taking
into account the bremsstrahlung energy loss. In fig. 5 the shape of E and
1/p distributions for 1 GeV electrons on 10 cm Ar gas at NTP are reported,
obtained using eqs. (20, 22). The result show that the uncertainty due to
bremsstrahlung is reproduced reasonably well, in spite of the long tailed
shape of the distribution.
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[27] R. Frühwirth and S. Frühwirth-Schnatter, Nucl. Instr. and Meth.,
110(1998)80.

[28] W. Heitler, The Quantum Theory of Radiation, third ed., Oxford Uni-
versity Press,Oxfor, 1954, p. 377.

15


