
13 Event reconstruction

13.1 RICH ring finding

13.1.1 Elastic Net for standalone RICH ring finding

The elastic net method [24] is a kind of artificial neural network [25, 26] that has been used for track
recognition in high energy physics [2,4,27,28]. The elastic net algorithm is one of the best optimization
algorithms in terms of efficiency and speed.

The method is well illustrated on a simple example of the traveling salesman problem (TSP). The travel-
ing salesman problem is a classic problem in the field of combinatorial optimization, in which efficient
methods for maximizing or minimizing a function of many independent variables is sought. The problem
is to find for a number of cities with given positions the shortest tour in which each city is visited once.

All exact methods known for determining an optimal route require a computing effort that increases
exponentially with the number of cities, so in practice exact solutions can be attempted only on problems
involving a few hundred cities or less. The traveling salesman problem thus belongs to the large class of
nondeterministic polynomial time complete problems. Many heuristic algorithms were developed for the
TSP aiming to bypass the combinatorial difficulties [29]. One of the most successful approaches to the
problem is the elastic net of Durbin and Willshaw [24]. The elastic net can be thought of as a number of
beads connected by elastics to form a ring. The essence of the method is to iteratively elongate a circular
close path in a non uniform way until it eventually passes sufficiently near to all the cities to define a
tour.
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Figure 13.1: Example of the progress of the elastic net method in the traveling salesman problem with
100 cities [24]

Following the deformable template approach [25], let us denote the cities by~xi . We are going to match
these cities with template coordinates~ya such that

∑
a |~ya−~ya+1| is minimum and that each~xi is matched

by at least one~ya. Define a binary neuronsia to be 1 ifa is matched toi and 0 otherwise. The following
energy expression is to be minimized in a valid tour:

E (sia,~ya) =
∑

ia

sia · |~xi −~ya|2 + γ ·
∑

a

|~ya−~ya+1|2 . (13.1)

The multiplierγ governs the relative strength between matching and tour length. Applying the mean field
approximation [25] one can derive the dynamical equation:

∆~ya = η

[
2
∑

i

via · (~xi −~ya)+ γ · (~ya+1−2~ya +~ya−1)

]
, (13.2)
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where continuous neuronsvia describe matching ofa to i:

via =
e−|~xi−~ya|2/T∑
be−|~xi−~yb|2/T

. (13.3)

Here the “temperature” T is decreasing at each update of templates~ya, andη is the parameter controlling
the minimization speed.

The algorithm is thus a procedure for the successive recalculation of the positions of a number of points of
the plane in which the cities lie. The points describe a closed path which is initially a small circle centered
on the middle of the distribution of cities and is gradually elongated non-uniformly to eventually pass
near all the cities and thus define a tour around them, see Fig.13.1(for details see the original paper [24]).
Each point on the path moves under the influence of two types of force (see Eq.13.2):

1. the first moves it towards those cities to which it is nearest;

2. the second pulls it towards its neighbors on the path, acting to minimize the total path length.

By this process, each city becomes associated with a particular section on the path. The tightness of the
association is determined by how the force contributed from a city depends on its distance, and the nature
of this dependence changes as the algorithm progresses. Initially all cities have roughly equal influence
on each point of the path. Subsequently a larger distance becomes less favored and each city gradually
becomes more influenced by the points on the path closest to it.

The elastic net algorithm produces tours of the same quality as other well known heuristic algorithms [30].

Evolution of the elastic net coordinates in continuous space results in significantly large number of itera-
tions without changing the order of the cities. This can be avoided if the net nodes will force to coincide
with cities at each iteration. Such modification of the elastic net has been developed by us in order to
increase speed of the net. In this so-called discrete algorithm the elastic net can be represented as a
closed tour passed exactly through a subset of the cities. An iteration consists of adding new cities to or
releasing some cities from the net.

File name Number of cities Extra path (%) Time, ms Time per city,µs
berlin52 52 0.00 0.98 19
st70 70 4.27 1.27 18
kroA100 100 3.03 1.46 15
lin105 105 0.78 1.84 18
ch130 130 5.59 2.56 20
tsp225 225 5.34 4.36 19
pcb442 442 8.37 12.35 28
pr1002 1002 6.12 24.94 25
pr2392 2392 8.42 58.53 24

Table 13.1: Extra path length (in % to the optimum) and time (in ms) of the discrete ENN algorithm in the TSP
problem for several distributions of cities with known optimal tour

Results of application of the discrete ENN algorithm to several distributions of cities with known optimal
tour are presented in Table13.1. The algorithm has good performance for real-life applications and is
extremely fast. Numbers in the last column of the table show almost constant execution time per city
that means linear behavior of the algorithm with respect to increase of the combinatorial complexity of
the problem.
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Based on the discrete elastic net we have developed an algorithm for standalone RICH ring recon-
struction. The algorithm has been already successfully tested on RICH data of the COMPASS exper-
iment [31]. Here we focus on maximizing the speed of the algorithm aiming its implementation in the
Level-1 trigger. The task of ring finding in the RICH detector with about 1000 hits per event is similar in
combinatorial complexity to thepr1002 example in the table13.1. Having now additional knowledge
of the form of the final tour one can expect increase of the speed down to a few milliseconds per event.

Figure 13.2: Example of a RICH event reconstructed by the L1ENNRingFinder algorithm. Upper and bottom
parts of the RICH detector are shown separately. Reconstructed rings are blue, while Monte Carlo rings are drawn
in red color (with slightly scaled radius to avoid overlapping with the reconstructed rings).

The task is to reconstruct rings by measured hits on a detection plane of the RICH detector. As circular
form of rings is predefined there is no need in internal forces of the elastic net. In contrast to the TSP
problem here the net does not pass through all hits. The task is to find rings surrounded by maximum
hits within errors of measurements. The interaction force between hits and the net does not depend on
distance. In this case noise hits do not attract the net making the algorithm robust. The net converges to
the area of maximum condensation of hits within 2–3 iterations, therefore the total time to reconstruct an
event is proportional to:

TL1ENN ∼ Nrings·Nhits per ring. (13.4)

Since the rings are independent, the algorithm reconstructs them one by one1. The elastic net algorithm
performs searching for a ring in a local area of the detector plane. When the ring found by the elastic net

1In a hardware implementation the algorithm can run in parallel several elastic nets.
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is accepted, all hits belonging to the ring are marked as used. The algorithm repeats until it recognizes
rings among hits left on the plane. Rings are fitted at the step of searching. Example of a reconstructed
event is given in Fig.13.2.

Rings set Performance (%) Number of rings
Reference set efficiency 92.21 1425
All set efficiency 80.52 4179
Extra set efficiency 74.47 2754
Clone rate 3.26 142
Ghost rate 14.98 652

Found MC rings/event 33
Time/event (ms) 1.07

Table 13.2:Performance of the L1ENNRingFinder algorithm taken on 100 events of central Au-Au collisions at
35 AGeV

The performance of the L1ENNRingFinder algorithm is presented in Table13.2. The “all set” contains
rings with more than 5 hits. In the “reference set” we put rings which originate from the target region
and have more than 15 hits. The other rings form the “extra set”.

A reconstructed ring is assigned to a generated Monte Carlo ring if there is at least 70% hits correspon-
dence. A Monte Carlo ring is regarded as found if it has been assigned to at least one reconstructed
ring. If the ring is found more than once, all additionally reconstructed rings are regarded as clones. A
reconstructed ring is called ghost if it is not assigned to any Monte Carlo ring using 70% criteria.

The L1ENNRingFinder algorithm shows a very good efficiency for reference rings (92%). Ghost rate
will be suppressed at the next step when rings will be matched to tracks from other detectors.

Because of its computational simplicity and extremely high speed (1 ms), the algorithm is considered to
be further implemented in hardware which can increase the speed by another few orders of magnitude.
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