

determination of TRD-efficiencies using ESD from simulated data

Outline

- motivation
- analysis
- geometry
- angular transformation
- results
 - o $P_T cut = 0 GeV$ o $P_T cut = 1 GeV$ o $P_T cut = 1 GeV - 4 supermoduls$
- TRD efficiency
- compendium
- open questions

GSI

Determination of the efficiency ...

- ... of the TRD (transition radiation detector) for such regions of the detector, where the geometrical acceptance is maximized
- ... of the TRD using the status bins TPCout and TRDrefit
- ... differential in pseudorapidity and azimuth angle $(\eta \phi plane)$

Analysis

how to determine the efficiency

Analysis

25.07.2008

Geometry

Angular transformation

motivation for the angular transformation

 \rightarrow To get a better resolution, we use ...

- 1. high P_T-cut
- 2. angular transformation

G 5)

ľ

Angular transformation

with angular transformation

without angular transformation

the effect of the \mathbf{P}_{T} cut you can imaging on the next slices

status bin – TPCout

-

P_T -cut = 0 GeV

status bin – TRDrefit

divided histogram - efficiency

P_T -cut = 0 GeV

Again the efficienc plot in the ϕ and η - plane SM10 SM11 SM12 SM13 SM14

status bin – TPCout

status bin - TRDrefit

divided histogram - efficiency

Again the efficienc plot in the ϕ and η - plane

P_{T} -cut = 1 GeV – 4 supermoduls

status bin – TPCout

P_T-cut = 1 GeV – 4 supermoduls

status bin - TRDrefit

P_T-cut = 1 GeV – 4 supermoduls

divided histogram - efficiency

Method 1:

Creating a histogram containing the counts for every efficiency from 0 to 1 and fitting this curve with a gaussian (efficiency determination)

 \rightarrow the mean value of the gaussian indicates the efficiency of the whole TRD

Method 2:

Binning of the stacks (dynamic binning) an determination of the efficiencies

- efficiency of the whole detector
- efficiency of the supermoduls
- efficiency of the stacks

Method 2:

 $P_T cut = 0 GeV$

• method 1 : efficiency TRD : 0,39

• method 2 : efficiency TRD : 0,45 *

 $P_T cut = 0 GeV$

- method 1 : efficiency TRD : 0,77
- method 2 : efficiency TRD : 0,95 *

 $P_T cut = 2 GeV$

- method 1 : efficiency TRD : 0,83
- method 2 : efficiency TRD : 0,99 *

* depends on cut

G S)

Compendium

for the future:

- improvement of gaussian fit procedure
- analysis of cosmics
- alignment (changing in the position of the chambers)

Open questions

 $P_T cut = 2 GeV$

Why this structure – seems like 36 supermoduls ???

P_T cut = 1 GeV Wrong peak positions

Thank you!!!

Sebastian Huber

Motivaion (backup)

Determination of the efficiency ...

• ... of the TRD (transition radiation detector) for such regions of the detector, where the geometrical acceptance is maximized

Sebastian Huber

- ... of the TRD using the status bins TRDout and TPCrefit
- ... differentiell in pseudorapidity and azimuth angle $(\eta \phi \rho lane)$

Comparisson of the efficiency ...

• ... of the supermoduls (sm0 – sm17)

o 18 supermoduls using simulated data

o 4 supermoduls using cosmics (not yet!)

...of the stacks (stack smX0 – stack smX4 (X = 1-17))

o 90 stacks shaping 18 supermoduls

o every stack consists of 5 TRD-chambers (= 450)

Analysis (backup)

- educing of the status bins TPCout and TRDrefit out of the ESD tracks and filling of histograms
 - o HistogrammAlignementTPCout

o HistogrammAlignementTPCrefit

merging of the output files – for a better statistic

o MergeHistoTPC

o MergeHistoTRD

→ merged*.root

 \rightarrow output*.root

graphical evaluation of the merged histograms

>>

Analysis (backup)

- o ProjectHistoTPCoutAzimuth
- o ProjectHistoTPCoutPseudorap
- o ProjectHistoTRDrefitAzimuth
- o ProjectHistoTRDrefitPseudorap
- o EfficiencyAzimuth
- o EfficiencyPseudorap
- o EfficiencyTRD
- determination of the efficiency of the complete detector, of the individual supermoduls and of the stacks
 - o EfficiencySM* (* 1 18)
 - o EfficiencyStack* (* 1 -90)
 - o EfficiencyTRD

- → EfficiencySupermodul*.root
- → EfficiencyStack*.root

 \rightarrow graphic*.root

>>

Angular transformation (backup)

Angular transformation (backup)

Compendium (backup)

- determination of the efficiency of the TRD using status bins TPCout and TRDrefit
- better resolution using P_T-cut and angular transformatio
- the structure of the TRD (supermoduls and stacks) is clearly identifiable
- the detemined efficiencies increase with the P_T-cut (more tracks which come up to the TRD)
- efficiencies in the region of 0,43 (PT-cut = 0 Gev) up to 0,98 (PT-cut = 2 Gev)

for the future:

- improvement of gaussian fit procedure
- analysis of cosmics
- alignment (changing in the position of the chambers)

