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Error analysis of the track fit on the Riemann sphere
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Abstract

We present in this paper a derivation of the covariance matrix of the estimated track parameters given by the
Riemann sphere track fitting method. Results of a simulation experiment from the ATLAS Transition Radiation

Tracker show that the covariance matrix presented herein very well reflects the actual spread of the track parameters.
r 2002 Elsevier Science B.V. All rights reserved.

Introduction

At the next generation of high-energy physics
experiments, as for instance at the Large Hadron
Collider (LHC) at CERN, the amount and the
complexity of the data will significantly exceed
those of today’s experiments. This will put very
strong demands on the speed and the robustness of
the track finding and track fitting algorithms
which are to be applied at LHC.

Recently, several novel algorithms have been
developed, specifically designed to meet the
requirements of the experiments of the LHC era.
Some of these focus on robustness with respect to
noise [1], while others have been shown to be very
fast but nevertheless virtually as precise as
optimal, time-consuming approaches for all but
the lowest momenta. Estimation of the parameters

of circular tracks by the Riemann sphere method
[2] belongs to the latter category.

A major shortcoming of the Riemann fit method
until now has been the lack of a method of
deriving an expression of the covariance matrix of
the estimated track parameters. We present in this
paper such a method. The calculation of the
covariance matrix turns out to be straightforward
given the knowledge of the eigenvalues and the
eigenvectors of a weighted sample covariance
matrix of the measurements mapped onto the
Riemann sphere, and these quantities are already
available after the fit has been performed.

The paper is organized as follows. In the next
section, we give a short review of the Riemann
sphere track fitting method. Thereafter, the
covariance matrix of the estimated parameters of
the Riemann fit is derived. In Section 4, we state
results of a simulation experiment from the
ATLAS Transition Radiation Tracker, and the
paper is concluded by a discussion and a short
outlook to further research.
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2. Track fitting by the Riemann sphere method

This method of fitting circular particle tracks
has been developed recently [2]. It is based on the
idea of mapping the measurements onto the
Riemann sphere [3] and fitting a plane to
the transformed measurements. In this way, the
nonlinear problem of circle fitting is transformed
into a linear one. The mapping of the measure-
ment ðRi;fiÞ (with i ¼ 1;y;N) onto the Riemann
sphere is defined by

xi ¼ Ri cos fi=ð1 þ R2
i Þ ð1Þ

yi ¼ Ri sin fi=ð1 þ R2
i Þ ð2Þ

zi ¼ R2
i =ð1 þ R2

i Þ ð3Þ

and the fitted plane is defined as the plane
minimizing the cost function

S ¼
XN
i¼1

ð1 þ R2
i Þ

2d2
i ¼

XN
i¼1

pid
2
i ð4Þ

where di is the distance from measurement i to the
plane. In other words, we want to find the
minimum of S with respect to the parameters n
(normal vector of the plane) and c (signed distance
from the plane to the origin). It turns out that the
fitted normal vector is given as one of the
eigenvectors of a weighted sample covariance
matrix Aw of the measurements,

Aw ¼
1

N

XN
i¼1

piðri � rcgÞðri � rcgÞ
T ð5Þ

where rTi ¼ ðxi; yi; ziÞ and rTcg ¼ ðxcg; ycg; zcgÞ; with

xcg ¼
PN

i¼1 pixiPN
j¼1 pj

ð6Þ

ycg ¼
PN

i¼1 piyiPN
j¼1 pj

ð7Þ

zcg ¼
PN

i¼1 piziPN
j¼1 pj

: ð8Þ

The specific eigenvector to be chosen is the
eigenvector corresponding to the smallest eigen-
value of Aw: With n given, c is straightforwardly

found by

c ¼ �nTrcg: ð9Þ

The mapping from the parameters nT ¼ ðn1; n2; n3Þ
and c down to the centre coordinates ðu0; v0Þ and
radius of curvature r of the circle is given by

u0 ¼ �
n1

2ðc þ n3Þ
ð10Þ

v0 ¼ �
n2

2ðc þ n3Þ
ð11Þ

r2 ¼
n2

1 þ n2
2 � 4cðc þ n3Þ

4ðc þ n3Þ
2

: ð12Þ

Note that there is a singularity for c ¼ �n3;
something which happens in the straight line limit.
However, in the case where c is very close or equal
to �n3 it is possible to map the parameters of the
plane to another set of circle parameters, say,
the curvature k; the angle c between the tangent to
the track and the x-axis, and the distance from the
origin a0 at the point of closest approach to the
origin. The latter set of parameters is also well
defined in the limit of straight lines.

3. Derivation of the covariance matrix

In order to find an expression of the covariance
matrix of the circle parameters, we first need to
know the covariance matrix of the normal vector.
To our knowledge, no exact expressions of this
kind exist in the literature. However, in the
asymptotic case, i.e. when the number of measure-
ments becomes very large, an expression is
available in the book by Mardia et al. [4].
According to them, the normalized eigenvector i
of the weighted sample covariance matrix Aw has
asymptotically the covariance matrix V i; where

V i ¼
li

N

X
jai

lj

ðlj � liÞ
2
cjc

T
j : ð13Þ

Here N is the number of measurements and li and
ci are the ith eigenvalue and eigenvector of Aw;
respectively. In order to determine the covariance
matrix Cn of the normal vector, i must be chosen
as the label attached to the smallest eigenvalue.
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Due to the normalization constraint of the normal
vector, Cn has rank two.

The basic assumption in this paper is that the
above expression is approximately valid also for a
finite number of measurements, and the simulation
experiments of Section 4 will show that this is indeed
the case. However, in the finite sample case it is not
obvious that the normalization factor N of the
covariance matrix should be exactly equal to the
number of measurements. Our approach is to treat
this normalization factor as a free parameter and use
the simulations as a means of optimizing its value.

We will now proceed to the problem of
calculating the full, four-dimensional covariance
matrix of the parameters of the fitted plane, Cðc;nÞ:
Knowing Cn; the missing elements varðcÞ and
covðc; nÞ can be computed in a straightforward
manner by using the lemma in the appendix. Note
that n is a function of the sample covariance
matrix Aw which in the Gaussian model is
independent of the sample mean rcg: In the
Gaussian model the assumptions of the lemma
are therefore satisfied.

From the definition of c (Eq. (9)) it follows that

varðcÞ ¼EðrcgÞ
TCnEðrcgÞ þ EðnÞTCrEðnÞ

þ traceðCnCrÞ ð14Þ

covðc; nÞ ¼ �CnEðrcgÞ: ð15Þ

As the expectations are unknown they are
approximated by the observed vectors n and rcg:
It remains to compute the covariance matrix Cr ¼
varðrcgÞ: This is done by linear error propagation
under the assumption that the Ri are known to
infinite precision. It is therefore sufficient to
compute the covariance matrix of ðxcg; ycgÞ

T: The
result is

var½ðxcg; ycgÞ
T� ¼

1

ð
PN

j¼1 pjÞ
2

XN
i¼1

p2
i varðfiÞ

�
y2
i �xiyi

�xiyi x2
i

 !
:

ð16Þ

This 2 � 2 matrix is padded with zeros in order to
obtain the matrix Cr: The full covariance matrix
Cðc;nÞ has dimension four and rank three.

The final step in our derivations is to calculate
the covariance matrix of the circle parameters
from Cðc;nÞ; and this again can be done by linear
error propagation. If we choose c; k and a0 as the
set of parameters of the circle, the relation is

Cðc;k;a0Þ ¼ J 	 Cðc;nÞ 	 JT ð17Þ

where J is the Jacobian of the transformation,

J ¼
@ðc;k; a0Þ
@ðc; nÞ

: ð18Þ

Since Cðc;nÞ has rank 3; Cðc;k;a0Þ also has rank 3: In
order to have a consistent set of parameters for all
tracks, the curvature k and the impact parameter
a0 have to be signed quantities. We define k to be
positive when the track has a clockwise rotation
with respect to the positive z-axis, and a0 to be
positive when the z component of the angular
momentum of the reconstructed track is negative.
In general, the correct signs have to be determined
from the knowledge of the direction of the track.
Using these definitions, the mapping from the
Riemann sphere parameters can be stated in the
following way:

c ¼ arctan
n2

n1

� �
ð19Þ

k ¼ s
2ðc þ n3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � n2
3 � 4cðc þ n3Þ

q ð20Þ

a0 ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � n2

3 � 4cðc þ n3Þ
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � n2

3

q
2ðc þ n3Þ

: ð21Þ

Here s is equal to the product of the sign of k
and the sign of c þ n3: It can also be noted that
we apply a four-quadrant version of the
inverse tangent in the calculation of c;
something which also requires the knowledge of
the actual direction of the track. However, the
magnitudes and signs of the derivatives of c are
the same as for the standard, two-quadrant version
of the inverse tangent. By calculating the deriva-
tives, the non-zero elements of the Jacobian are
given as

@c
@n1

¼ �
n2

n2
1 þ n2

2

ð22Þ
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@c
@n2

¼
n1

n2
1 þ n2

2

ð23Þ

@k
@n3

¼ s
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � n2
3 � 4cðc þ n3Þ

q
0
B@

þ
2ðc þ n3Þð2c þ n3Þ

ð1 � n2
3 � 4cðc þ n3ÞÞ

3=2

1
CA ð24Þ

@k
@c

¼ s
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � n2
3 � 4cðc þ n3Þ

q
0
B@

þ
4ðc þ n3Þð2c þ n3Þ

ð1 � n2
3 � 4cðc þ n3ÞÞ

3=2

1
CA ð25Þ

@a0

@n3
¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � n2

3

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � n2

3 � 4cðc þ n3Þ
q
2ðc þ n3Þ

2

0
@
þ

n3

2ðc þ n3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � n2

3

q

�
2c þ n3

2ðc þ n3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � n2

3 � 4cðc þ n3Þ
q

1
CA ð26Þ

@a0

@c
¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � n2

3

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � n2

3 � 4cðc þ n3Þ
q
2ðc þ n3Þ

2

0
@

�
2c þ n3

ðc þ n3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � n2

3 � 4cðc þ n3Þ
q

1
CA: ð27Þ

In the case where a track is almost straight, there
are potential singularities in the above expressions
of the impact parameter and its derivatives.
However, by series expansions of the square roots
up to second order, the formulas become in this
limit:

a0 ¼ �sðcð1 þ 1
2n

2
3Þ þ c2ðc þ n3ÞÞ ð28Þ

@a0

@n3
¼ �scðc þ n3Þ ð29Þ

@a0

@c
¼ �s 1 þ

1

2
n2

3 þ 3c2 þ 2n3c

� �
: ð30Þ

These expressions are well defined also in the limit
c þ n3-0:

4. A simulation experiment in the ATLAS TRT

The ATLAS Transition Radiation Tracker
(TRT) is the outermost part of the Inner Detector
of the ATLAS experiment at the LHC at CERN,
and we have focused on simulated tracks coming
from the barrel part of the TRT. The TRT is a
drift tube detector with in-principle ambiguous
measurements. In our simulations, however, we
have turned the mirror hits off. Also, since the
focus of this paper is track fitting rather than track
finding, we assume that a 100% efficient pattern
recognition procedure has been applied before-
hand, i.e. there are no noise hits in the track
candidates. There are 9800 tracks in our track
sample, all with a transversal momentum above
1 GeV=c: The track sample used in this work is the
same as the one described in Ref. [2]. For more
details of the TRT, the reader is referred to the
ATLAS Inner Detector TDR [5].

We have first tested out how well Cðc;nÞ reflects
the actual spread of the parameters of the fitted
plane. This has been done by looking at the
standardized residuals, i.e. the residuals of the
estimated parameters with respect to the true
values divided by the estimated standard devia-
tions, and the tail probabilities. The latter quantity
is defined as one minus the cumulative distribution
function of the following:

w2 ¼ DpT 	 C�1
ðc;nÞ 	 Dp ð31Þ

where Dp is the vector consisting of the residuals of
the estimated parameters with respect to the true
ones. If this w2 really obeys a w2-distribution, a
histogram consisting of all the tail probabilities
should be reasonably flat. Since Cðc;nÞ does not
have full rank, the inverse does not exist. We have
therefore used a generalized inverse in the calcula-
tions of this w2:

The relevant histograms are shown in Fig. 1. As
can be seen in (a), the histogram of the tail
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probabilities is reasonably flat, and its mean value
is 0:501: The standardized residuals (shown in (b)–
(e)) have standard deviations ranging from 1:003
to 1:007; i.e. they are all very close to unity.
These tests establish the fact that the estimated

covariance matrix very well reproduces the
actual spread of the parameters. It can be
noted that the optimal value of the normalization
factor, defined in Eq. (13), turns out to be N � 5;
where N is the number of measurements

Fig. 1. Histograms of tail probabilities (a) and standardized residuals of c; n1; n2 and n3 (b)–(e).
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in the track candidate. In the ATLAS TRT, N is
about 35:

In Fig. 2, we show quantities similar to the ones
in Fig. 1 for the circle parameters c; k and a0: The
mean value of the tail probabilities in (a) is still
0:501; and the standard deviations of the standar-
dized residuals (shown in (b)–(d)) are all about
1:003: The quality of the linear approximation in
the propagation of the errors is thus obviously
more than good enough.

5. Discussion and outlook

We have in this paper presented a method of
deriving a covariance matrix of the estimated
parameters of circular tracks fitted by the

Riemann sphere method. The calculation of the
covariance matrix is straightforward, given the
knowledge of the eigenvalues and eigenvectors of a
weighted sample covariance matrix of the mea-
surements mapped onto the Riemann sphere.
Through a simulation experiment from the
ATLAS TRT, the covariance matrix presented in
this paper has been shown to very well reproduce
the actual spread of the track parameters.

It can be noted that the Riemann fit method is
quite similar to the Karim.aaki method of fitting
circular arcs [6]. This is due to the fact that even
though the two methods are derived in different
ways, they both amount to a least-squares fit of
the track parameters. We have tested out the
Karim.aaki method on the simulated data presented
in Section 4. A comparison with the Riemann fit

Fig. 2. Histograms of tail probabilities (a) and standardized residuals of c; k and a0 (b)–(d).
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shows that the performance of the two methods is
virtually identical, concerning both the accuracy of
the estimates and the computational speed. The
Riemann fit is, however, more general than the
Karim.aaki method because it is not necessary to
assume that the observation error is small com-
pared to the radius of the circle.

The Riemann fit method is restricted to two-
dimensional data, i.e. it works only in the case
where the data are truly two-dimensional, as in the
ATLAS TRT, or in the case where three-dimen-
sional data are projected into the bending plane.
The need for generalizing the method to truly
three-dimensional data is therefore obvious. Pro-
gress in this direction is being made, and we intend
to report results from this ongoing work in a
subsequent paper.

Appendix

Lemma. Assume that a and b are n-dimensional
independent stochastic vectors with expectations
a ¼ EðaÞ and b ¼ EðbÞ and covariance matrices A ¼
varðaÞ and B ¼ varðbÞ; respectively. Let c ¼ aTb:
Then

(a) EðcÞ ¼ aTb

(b) varðcÞ ¼ aTBa þ bTAb þ traceðABÞ
(c) covða; cÞ ¼ Ab:

Proof. (a) Follows immediately from the indepen-
dency of a and b:

ðbÞ varðcÞ ¼ E
P

i aibi

� �2h i
�
P

i EðaiÞEðbiÞ
� �2

¼
P

i

P
j ½EðaiajÞEðbibjÞ � aiajbibj�

¼
P

i

P
j ½ðAij þ aiajÞðBij þ bibjÞ

�aiajbibj�

¼ aTBa þ bTAb þ traceðABÞ:

ðcÞ covða; cÞ ¼ EðaaTbÞ � EðaÞEðaTbÞ

¼ ½EðaaTÞ � EðaÞEðaTÞ�EðbÞ ¼ Ab:
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