// -------------------------------------------------------------------------- // // Macro for standard transport simulation using UrQMD input and GEANT3 // Standard CBM setup with STS, RICH, TRD, TOF and ECAL // // V. Friese 22/02/2007 // // -------------------------------------------------------------------------- void run_sim(const char* inFile, const char* outFile, const char* parFile, Int_t nEvents = 1) { // ======================================================================== // Adjust this part according to your requirements // Confirm input parameters cout << "Input file is " << inFile << endl; cout << "Output file is " << outFile << endl; cout << "Parameter file is " << parFile << endl; cout << "Events to process " << nEvents << endl; // ----- Geometries ----------------------------------------------------- TString caveGeom = "cave.geo"; TString targetGeom = "target.geo"; TString pipeGeom = "pipe_standard.geo"; TString magnetGeom = "magnet_active.geo"; TString mvdGeom = "mvd_standard.geo"; TString stsGeom = "sts_standard.geo"; TString richGeom = "rich_standard.geo"; TString trdGeom = "trd_standard.geo"; TString tofGeom = "tof_standard.geo"; TString ecalGeom = "ecal_FastMC.geo"; // ----- Magnetic field ----------------------------------------------- TString fieldMap = "FieldMuonMagnet"; // name of field map Double_t fieldZ = 50.; // field centre z position Double_t fieldScale = 1.; // field scaling factor // In general, the following parts need not be touched // ======================================================================== // ---- Debug option ------------------------------------------------- gDebug = 0; // ------------------------------------------------------------------------ // ----- Timer -------------------------------------------------------- TStopwatch timer; timer.Start(); // ------------------------------------------------------------------------ // ---- Load libraries ------------------------------------------------- gROOT->LoadMacro("$VMCWORKDIR/gconfig/basiclibs.C"); basiclibs(); gSystem->Load("libGeoBase"); gSystem->Load("libParBase"); gSystem->Load("libBase"); gSystem->Load("libCbmBase"); gSystem->Load("libField"); gSystem->Load("libGen"); gSystem->Load("libPassive"); gSystem->Load("libMvd"); gSystem->Load("libSts"); gSystem->Load("libRich"); gSystem->Load("libTrd"); gSystem->Load("libTof"); gSystem->Load("libEcal"); // ----------------------------------------------------------------------- // ----- Create simulation run ---------------------------------------- CbmRunSim* fRun = new CbmRunSim(); fRun->SetName("TGeant3"); // Transport engine fRun->SetOutputFile(outFile); // Output file CbmRuntimeDb* rtdb = fRun->GetRuntimeDb(); // ------------------------------------------------------------------------ // ----- Create media ------------------------------------------------- fRun->SetMaterials("media.geo"); // Materials // ------------------------------------------------------------------------ // ----- Create detectors and passive volumes ------------------------- if ( caveGeom != "" ) { CbmModule* cave = new CbmCave("CAVE"); cave->SetGeometryFileName(caveGeom); fRun->AddModule(cave); } if ( pipeGeom != "" ) { CbmModule* pipe = new CbmPipe("PIPE"); pipe->SetGeometryFileName(pipeGeom); fRun->AddModule(pipe); } if ( targetGeom != "" ) { CbmModule* target = new CbmTarget("Target"); target->SetGeometryFileName(targetGeom); fRun->AddModule(target); } if ( magnetGeom != "" ) { CbmModule* magnet = new CbmMagnet("MAGNET"); magnet->SetGeometryFileName(magnetGeom); fRun->AddModule(magnet); } if ( mvdGeom != "" ) { CbmDetector* mvd = new CbmMvd("MVD", kTRUE); mvd->SetGeometryFileName(mvdGeom); fRun->AddModule(mvd); } if ( stsGeom != "" ) { CbmDetector* sts = new CbmSts("STS", kTRUE); sts->SetGeometryFileName(stsGeom); fRun->AddModule(sts); } if ( richGeom != "" ) { CbmDetector* rich = new CbmRich("RICH", kTRUE); rich->SetGeometryFileName(richGeom); fRun->AddModule(rich); } if ( trdGeom != "" ) { CbmDetector* trd = new CbmTrd("TRD",kTRUE ); trd->SetGeometryFileName(trdGeom); fRun->AddModule(trd); } if ( tofGeom != "" ) { CbmDetector* tof = new CbmTof("TOF", kTRUE); tof->SetGeometryFileName(tofGeom); fRun->AddModule(tof); } if ( ecalGeom != "" ) { CbmDetector* ecal = new CbmEcal("ECAL", kTRUE, ecalGeom.Data()); fRun->AddModule(ecal); } // ------------------------------------------------------------------------ // ----- Create magnetic field ---------------------------------------- CbmFieldMap* magField = NULL; if ( fieldMap == "FieldActive" || fieldMap == "FieldIron") magField = new CbmFieldMapSym3(fieldMap); else if ( fieldMap == "FieldAlligator" ) magField = new CbmFieldMapSym2(fieldMap); else if ( fieldMap = "FieldMuonMagnet" ) magField = new CbmFieldMapSym3(fieldMap); else { cout << "===> ERROR: Field map " << fieldMap << " unknown! " << endl; exit; } magField->SetPosition(0., 0., fieldZ); magField->SetScale(fieldScale); fRun->SetField(magField); // ------------------------------------------------------------------------ // ----- Create PrimaryGenerator -------------------------------------- CbmPrimaryGenerator* primGen = new CbmPrimaryGenerator(); CbmUrqmdGenerator* urqmdGen = new CbmUrqmdGenerator(inFile); primGen->AddGenerator(urqmdGen); fRun->SetGenerator(primGen); // ------------------------------------------------------------------------ // ----- Run initialisation ------------------------------------------- fRun->Init(); // ------------------------------------------------------------------------ // ----- Runtime database --------------------------------------------- CbmFieldPar* fieldPar = (CbmFieldPar*) rtdb->getContainer("CbmFieldPar"); fieldPar->SetParameters(magField); fieldPar->setChanged(); fieldPar->setInputVersion(fRun->GetRunId(),1); Bool_t kParameterMerged = kTRUE; CbmParRootFileIo* parOut = new CbmParRootFileIo(kParameterMerged); parOut->open(parFile); rtdb->setOutput(parOut); rtdb->saveOutput(); rtdb->print(); // ------------------------------------------------------------------------ // ----- Start run ---------------------------------------------------- fRun->Run(nEvents); // ------------------------------------------------------------------------ // ----- Finish ------------------------------------------------------- timer.Stop(); Double_t rtime = timer.RealTime(); Double_t ctime = timer.CpuTime(); cout << endl << endl; cout << "Macro finished succesfully." << endl; cout << "Output file is " << outFile << endl; cout << "Parameter file is " << parFile << endl; cout << "Real time " << rtime << " s, CPU time " << ctime << "s" << endl << endl; // ------------------------------------------------------------------------ }