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Abstract

We present an extension of the Riemann circle fit to a helix fit in space. The method is studied both in barrel- and
disk-type detectors. We show results from two simulation experiments, including a comparison to linear regression and
to the Kalman filter. An implementation in C++ is described. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The fitting of observations to a helical track
model will be a task of considerable importance in
the data analysis chain of the future LHC
experiments. As long as the magnetic field in the
inner tracker is sufficiently homogeneous the track
model can be assumed to be a perfect helix. This
has clear advantages over a more general track
model if the tracks are fitted by (linearized) least-
squares estimators like global regression [1] or the
extended Kalman filter [2]. For simple detector
shapes (cylinders or planes), the track model can
be computed explicitly, and so can the Jacobians
that are needed to build the linear model for the
global regression or to propagate the track states
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and the associated covariance matrices in the
Kalman filter. For this reason, the helical track fit
is faster than a fit with a more general track model
which requires numerical track-and-error propa-
gation, for instance by a Runge—Kutta-type
algorithm [1,3].

There are, however, certain drawbacks to
linearized least-squares estimators, the main one
being that in many cases an approximate knowl-
edge of the track is required in order to find an
expansion point of sufficient quality. In the
context of the Kalman filter the expansion point
is often called the reference track. If the reference
track turns out to be too far from the real track an
iteration may be required. In extreme cases, the
linear approximation may turn out to be not
satisfactory at all, in which case one has to resort
to non-linear least-squares methods, which tend to
be slow and inconvenient. Recently, an explicit
third-order approximation to the helix track
model has been put forward in the context of fast
alignment with tracks [4]. The method is very fast
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but breaks down at low momenta where the
approximation error gets too large.

In this note, we present a helix fit that does not
require linear expansions and does not require
prior knowledge of the track, at least as long as
multiple scattering can be neglected. In this case,
the method described here is significantly faster
than a global regression or a Kalman filter, and
gives virtually the same precision. If multiple
scattering is significant it can be easily incorpo-
rated at the price of running an approximate fit
first. The method is an extension of the Riemann
circle fit, which has been introduced recently [5,6]
and which can deal with the lowest transverse
momentum that is of interest in the LHC
experiments. For this reason, the helix fit is also
called a Riemann (helix) fit.

2. The method
2.1. Brief review of the Riemann circle fit

The central idea of the Riemann circle fit is
a mapping of the observations, which are sup-
posed to lie in the x—y-plane, on a second-order
surface in space. In the standard Riemann fit, this
surface is the Riemann sphere, and the mapping is
the stereographic projection (see e.g. [7]). In a
recently developed modification [8] the surface is
the circular paraboloid w = x>+ )%, and the
mapping is parallel to w, i.e. an observation
(xi/y:) is mapped on the point (x;/y;/wi = x? +
3?). In both cases observations lying on a circle are
mapped on points in space lying on a plane. The
problem of fitting a circle to the original observa-
tions is thus transformed into the problem of
fitting a plane to the mapped observations. The
latter problem is solved by finding the eigenvector
to the smallest eigenvalue of the sample covariance
matrix of the mapped observations. Although the
stereographic projection is certainly better known,
the projection on the paraboloid is simpler and
better suited for our purpose and will henceforth
be used. We will also make use of the formalism
introduced in Ref. [8] in order to take into account
multiple scattering in the fit. This will be described
in more detail below.

2.2. Extension to the Riemann helix fit

We now assume that there are n three-dimen-
sional detector hits m; given in cylindrical co-
ordinates:

Ri®;

Typically, two out of the three observations are
affected by measurement errors, whereas the third
one is known exactly, or at least within the
precision obtained by the alignment. For instance,
in a barrel (cylindrical) detector R® and z are
measured, and R is known, whereas in a forward
(plane) detector R® and R are measured, and z is
known.

The helix fit is based on the observation
that after a circle fit in the bending plane the arc
length between successive hits can be computed.
The linear relation between the arc length and the
z-position of the helix can then be used to estimate
the polar angle 3 and the z-position of the track in
the barrel case, or the polar angle and the radial
position of the track in the forward case.

2.2.1. Circle fit
First the hits are mapped on the paraboloid:

Xi = R; cos(®;)
Yi = R;sin(®;)
w; = R?.

In order to avoid confusion with the z-axis of the
detector, the axis of the paraboloid is denoted by
w. For the sake of convenience, the mapped hits
are arranged in a matrix X:

X1 )1 w1

X2 Vo2 w2
X=11 . " .

xn yn Wn

The weight matrix of the circle fit is the inverse
W of the covariance matrix Vpgre of the ob-
servations R®. This matrix is diagonal only if
multiple scattering can be neglected. If the
transverse momentum is low the track does not
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intersect the circles R = R; at a right angle, and the
precision of the fit can be improved by correcting
for the deviation from the right angle:

Vi =CVgo C+ S ViS

where C and § are diagonal matrices defined by

Sii = R,K/Z, Cij = 1— S2~

1

and « is the curvature of the projected track. Note
that in a barrel detector Vi vanishes. The
correction is valid for small impact parameter of
the track.

The correction obviously requires prior knowl-
edge of the curvature, so it can be performed only
if a reference track is available. It is most important
for tracks of low momentum for which multiple
scattering is also non-negligible and for which a
reference track has to be computed in any case.

Next, the weighted sample mean ¥ and the
weighted sample covariance Vy matrix are com-
puted:

=1"wx/1"w1

Vy=XT-x"1Hw(X — 1%)
=X"wx —xTzx-1"w1

where 1 is a column vector of ones. The normal
vector n of the fitted plane is the normalized
eigenvector to the smallest eigenvalue of Vy.
Finally, the distance ¢ of the plane from the origin
is obtained by

c=—X-n.

From ¢ and n the radius p and the origin (xo/y¢) of
the circle can be computed [8]:

n oom , 1 —n}—demn;

Xo = —2—’13, Yo = _2_113’ P = 4n§

The computation of the covariance matrix of the
estimated plane parameters ¢ and n has been
worked out in [8], as well as the error propagation
to the set of circle parameters used in CMS and
ATLAS.

2.2.2. Line fit

Once the origin and the radius of the projected
circle are known, we can compute the arc length
between successive observations. The fastest way

to find the intersections of the fitted circle with
the circles R = R; is in the paraboloid transform.
The circle R = R; transforms to the plane w = R?.
The intersection of this plane and the fitted plane
¢+ mx+ npy+ nzw =0 is the straight line

X = /np
¢+ R’n;
y=—2"="—In
na
w= R?.

Intersection of this line with the paraboloid w =
x% +y? gives

o o—m(e+ Ren3)+m \/(n% + n%)Rl2 —(c+ R%}’l3)2

A=
ny(n} + n3)

Plugging in this value of / in the equation of the
line gives the intersection point:

—ni(c + Rin3)+nm \/(n% + m)R? — (¢ + R¥n3)*

X; =
n%—i—n%

e+ Rons) Ty J0rF + m)R? — (c + Rims)’

2 2
ny + n;

Yi=

Note that no trigonometric functions and only a
single square root per layer need to be computed.
The only problem is the choice of the correct sign.
This can easily be solved by making sure that the
point of intersection is close to the measured hit.
The computation of the arc length s between
successive observations is now trivial, the radius of
the fitted circle being known. The result is a vector
s with s; = 0.

The line fit in a barrel detector: In a detector of
the barrel type, the radius R of a hit can be
assumed to be known to very high precision,
whereas z has a measurement error. In such a
detector we make a regression of z on s, using the
full covariance matrix of the observation vector z
if multiple scattering cannot be neglected:

1 S1
z=Ap+¢ withd=]|:® ' |,
1 s,
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where 4 = n/2 — 3. From the fitted parameters of
the straight line we can immediately determine the
z of the track in the innermost layer and the polar
angle 3 of the track.

The line fit in a forward detector: In a detector of
the forward type, the z-positions can be assumed
to be known, and the radial position of the hits are
observed. In this case we make a regression of s on
z. The covariance matrix of s is to a very good
approximation equal to the covariance matrix of
R. Multiple scattering can be included, if required.
Thus we get the following regression model:

1 Z
s=Ap+¢e withd=|: = |,

1 z,

s
p= (tan&l)’ cov(e) = Vp.

From the fitted parameters p of the straight line we
can immediately determine the polar angle  and
the s-values of the track in all layers:

§ = Ap.

Using § and the fitted radius of the circle we can
predict the radial positions of the track in all
layers. We recall that (xy/yo) is the center of the
fitted circle, p is its radius, and (x;/y;) is the
intersection of the fitted circle with the circle R =
R;. We define the polar angle ©; of (x;/y;) with
respect to (xo/yo) by

Y1 —JXo

@, = arctan .
X1 — Xo

The predicted polar angles of all points are then
given by

@i =0+ §,‘/,0.

From these we are finally able to predict the radial
positions of all hits

Xi=x0+p cos(®;)

i = Xo + psin(@))

Ri= /3 +72.

Since we have used the linear relationship between
s and z in deriving these predictions they are on

average closer to the true radial positions than the
observed ones. This is particularly important in a
detector like the forward silicon tracker of CMS,
because the precision of the radial position
measurement is rather poor in the single-sided
layers, whereas @ is measured much more accu-
rately. Improving the precision of the radial
position therefore improves very much the preci-
sion of R® and thus the precision of a subsequent
circle fit. For this reason, it is advantageous to
redo the circle fit after the line fit.

2.3. The Riemann helix fit in cylindrical detectors

We assume that in a detector of the barrel type
the radial position of the hits is known to a
precision that is better than the precision in R®. In
this case, the error on R can be neglected
altogether. The helix fit requires the following
steps:

1. Reference track

This step needs to be carried out only for low

momentum tracks.

(a) Circle fit without multiple scattering: The
weight matrix is diagonal; the diagonal
terms contain the variances of the R®
observations. The intersections of the
fitted circle with the circles R = R; and
the arc lengths between successive layers
are computed.

(b) Line fit without multiple scattering: The
weight matrix is diagonal; the diagonal
terms contain the variances of the z
observations.

(¢c) Covariance matrix of multiple scattering
(optional): The covariance matrix is
evaluated separately for the two fits. We
use the simple straight line approximation
of [9]. For the circle fit we have:

COV(RGI)/( , R‘D[)

min(k—1,/—1) 2

o
= E (Ri — R)(R; — R)—%
= sin” 9

where o-/z is the variance of the projected
multiple scattering angle in layer j. In a
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similar vein, we have for the line fit:
cov(zy, zy)

min(k—1,/—1)

= 2

J=1

2
(5t — )51 — 8)—2
k= )81 — 8j)——7—-
/ " sin* 9

The correlations between R® and z are
neglected. We will show below that
the effect of this is negligible, except for
very low momenta.
Circle fit
For low momentum tracks the covariance
matrix Vge is corrected for non-orthogonal
intersection of the cylinders, using the curva-
ture of the reference track. Then the circle fit
proceeds as outlined above, using the inverse
of the corrected Vge as its weight matrix. The
fitted circle is intersected with the measure-
ment layers, and the arc length between
successive layers are computed.
Line fit
The line fit is a regression of z on s, using the
inverse of V. as its weight matrix. The fitted
regression parameters are z at the innermost
layer and tan 3. The combined parameters of
the circle and of the line fit fully specify the
fitted helix. The joint covariance matrix of
the helix parameters is built from the covar-
1ance matrices of the two fits, the correlations
being neglected.

2.4. The Riemann helix fit in plane detectors

In a detector of the forward type the detectors can
be assumed to be planes at fixed z-positions. The
observations are now R® and R. As the error on R
cannot be neglected the procedure is slightly more
complicated than in the case of cylindrical detectors.

1.

Reference track

The reference track is always computed.

(a) Circle fit without multiple scattering: The
weight matrix is diagonal; the diagonal
terms contain the variances of the R®
observations. The intersections of the
fitted circle with the circles R = R; and
the arc lengths between successive ob-
servations are computed.

(b) Line fit without multiple scattering: The
weight matrix is diagonal; the diagonal
terms contain the variances of the R
observations. After the fit the predicted
radial positions R; of the track are
computed. The variances of the R
observations are recomputed using the
predicted R;.

(¢) Covariance matrix of multiple scattering
(optional): The covariance matrix is
evaluated separately for the two fits. For
the circle fit the predicted radial positions
from the reference track are used. The
computation is the same as in cylindrical
detectors:
COV(R@/(, R@[)

min(kil:,lfl)

di
(Rr — Rj)(R; — R))——
= si

n? 9

For the line fit we have

cov(Ry, R;)
min(k—1,/—1) 62
= Z (zk — zj)(z z])COS4 g

J=1

The correlations between R® and R are
neglected. We will show below that the
effect of this is negligible.

2. Preliminary circle fit

For low momentum tracks the covariance
matrix Vg is corrected for non-orthogonal
intersection of the cylinders, using the curva-
ture of the reference track. Then the circle fit
proceeds as outlined above, using the inverse
of the corrected Ve as its weight matrix. The
fitted circle is intersected with the circles R =
R;, and the arc length between successive
observations are computed.

. Preliminary line fit

The line fit is a regression of s on z, using the
inverse of Vjr as its weight matrix. The
predicted radial positions of the helix at all
planes z = z; are computed.

. Corrections using the preliminary fit

Using the predicted radial positions R;, the
observations R® and their observations
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variances are recomputed, and the entire
matrix Fge is corrected for non-orthogonal
intersection of the circles R = R;, neglecting
the errors on R,.
5. Final fit

Steps 2 and 3 are repeated. The combined
parameters of the circle and of the line fit fully
specify the fitted helix. The joint covariance
matrix of the helix parameters is built from
the covariance matrices of the two fits, the
correlations being neglected.

3. Results of simulation experiments and
comparison with other methods

Two simulation experiments were conducted in
order to compare the Riemann fit with other
methods, in particular, the Kalman filter and
the global fit (linear regression). The main purpose
was to compare the precision and the speed of the
respective methods. It was therefore assumed that
the pattern recognition problem had already been
solved. As both the Riemann fit and its competi-
tors are purely least-squares estimators they are
affected by outliers or noise in the same way, and
thus the assumption of a perfect pattern recogni-
tion implies no loss of generality.

3.1. Simulation experiment 1: cylindrical detectors

3.1.1. The model detector

The detector used in the simulation experiment
is a simplified model of the barrel part of the CMS
Inner Tracker. It has 3 pixel and 10 silicon strip
layers. The radial position of each layer, its
resolution in R®, its resolution in z, and
its thickness in radiation lengths are listed in
Table 1. With the exception of the thickness, which
is approximate, the values have been obtained by
analyzing a simulated sample of 1000 tracks
generated by the detailed tracker simulation.

3.1.2. Generation of the track samples

We have generated samples of 50 000 tracks in
each run of the simulation experiment. A run
corresponds to a fixed value of pr. The following

Table 1
Layout of the barrel-type model detector

Layer R (mm) ore (Um) o, (mm) X/Xo
1 43 10 0.02 0.04
2 72 10 0.02 0.04
3 110 10 0.02 0.04
4 270 25 0.36 0.02
5 362 25 0.36 0.02
6 441 40 34.0 0.02
7 515 40 34.0 0.02
8 633 40 0.7 0.02
9 719 40 0.7 0.02

10 805 60 54.0 0.02

11 891 60 54.0 0.02

12 988 40 54.0 0.02

13 1103 40 54.0 0.02

values of pr have been used:
pr=1,1.5,2.5,5,10,20,50 GeV/c.

The remaining initial track parameters on the
innermost cylinder were generated according to a
uniform distribution in the following intervals:

0<P<2m,—5cm<z<5cm,0.7<3<m/2.

The initial ¢ was set equal to the initial ¢. Multiple
scattering in the detectors was simulated according
to the standard Highland formula [10]. Energy loss
was neglected.

3.1.3. Resolution and timing

The Riemann fit (RF) was compared to an
extended Kalman filter (KF) and to a linearized
regression (global fit, GF). All methods were tested
on different levels of precision as far as the
treatment of multiple scattering is concerned. A
summary is shown in Table 2. The approximate
covariance matrix of multiple scattering is the one
described in Section 2.4, whereas the exact one is
obtained by exact error propagation in the helical
track model.

The baseline of the comparison was the Kalman
filter on level 3, including multiple scattering, in all
cases. Fig. 1 shows the performance on level 0,
neglecting multiple scattering altogether. There is
perfect agreement between the three methods. The
effect of multiple scattering is visible but for the
highest momentum.
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The execution times of the three methods are
shown in Table 3. The figures refer to the C++
implementation described in Section 4. The error
(r.m.s.) of the relative timings is about 2%. The
baseline of the comparison is again the Kalman
filter on level 3. The Riemann fit is faster than the
Kalman filter by about 30%. The global fit is
somewhat slower than the Kalman filter. The
Kalman filter itself is affected very little by
switching off multiple scattering, as multiple
scattering is included simply by adding a few
terms to the local 5 x 5 covariance matrix, which is
non-diagonal in any case.

R. Frithwirth et al. | Nuclear Instruments and Methods in Physics Research A 490 (2002) 366-378

The performance on the higher levels is of
course much better than on level 0. Fig. 2 shows
the relative generalized variance on levels above 0.
It turns out that the correlations between the
projections (level 3) are necessary for attaining
the full precision at low momentum. There are
significant differences between levels 1 and 2 only
at the very lowest pr; in all other cases the
approximation used at level 1 (see Section 2.3) is
adequate. The behaviour of the global fit and of
the Riemann fit is very similar at levels 1 and 2.

The relative timing is summarized in Table 4.
The Riemann fit on level 1 is still somewhat faster
than the Kalman filter on level 3, and clearly faster
than the global fit on the same level. The absolute
timing of the baseline is about 0.7 ms per track, on
a 1.1 GHz Athlon processor running Linux 2.2.

Table 3

Relative timing of all methods on level 0

Method Level trel
Kalman filter 0 0.98
Global fit 0 1.09
Riemann fit 0 0.72

The baseline is the Kalman filter on level 3.

Cylindrical detectors

Kalman 0
Global 0
Riemann 0

Table 2
Levels of treatment of multiple scattering
Level Covariance matrix of multiple Applies to
scattering
0 None All
methods
1 Approximate GF, RF
2 Exact, but no correlations GF, RF
between projections
3 Exact, including all correlations GF, KF
10’
_ 10°}F
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>
f
@
(=]
o
=
3
2
10'F
10°
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10"

10°
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Fig. 1. Relative generalized variance of all methods on level 0, neglecting multiple scattering. The baseline is the Kalman filter on level

3, including multiple scattering.
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Cylindrical detectors
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Fig. 2. Relative generalized variance of all methods on levels above 0. The baseline is the Kalman filter on level 3.

Table 4

Relative timing of all methods on levels above 0

Method Level trel
Kalman filter 3 1.00
Global fit 1 1.25
Global fit 2 1.51
Global fit 3 1.54
Riemann fit 1 0.92
Riemann fit 2 1.19

The baseline is the Kalman filter on level 3.

The relative speed of the methods depends to
some extent on the programming style and on the
implementation. In the prototype version, which
was written in an interpreter language (MATLAB
[11]), the Kalman filter is always the fastest one,
even on level 1, and both the global fit and the
Riemann fit are faster on level 2 than on level 1.
This is mainly because of the fact that in MATLAB
interpreted loops are much slower than the
compiled loops in the built-in matrix functions.
Table 5 is intended to give the reader some idea on
where the computing time is spent in the C++
implementation. For the sake of comparison also
the time spent in the generation of the tracks
is shown. The time required for building the

covariance matrix refers to the global covariance
matrix required by the Riemann fit and the
global fit, but not by the Kalman filter, which
explains why the corresponding figure is equal
to 0.

3.2. Simulation experiment 2: plane detectors

3.2.1. The model detector

The detector used in the simulation experiment
is a simplified model of the forward part of
the CMS Inner Tracker. It has 2 pixel and 12
silicon strip layers. The z-position of each layers,
its resolution in R®, its resolution in R, and

its thickness in radiation lengths are listed in
Table 6.

3.2.2. Generation of the track samples

We have again generated samples of 50000
tracks in each run of the simulation experiment,
using the same set of transverse momenta as
before. The remaining initial track parameters on
the innermost plane were generated according to a
uniform distribution at z = 0:

—Imm<x<l mm,—1 mm<y<1 mm,
0.2<3<0.6, 0<p<2m.
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Table 5

Breakdown of execution time on levels above 0 (in ms per track)

Method Level Generation Ref. track Cov. matrix Fit+ overhead

Kalman filter 3 0.32 0.27 0.00 0.44

Global fit 1 0.32 0.27 0.13 0.48

Global fit 2 0.32 0.27 0.31 0.48

Global fit 3 0.32 0.27 032 0.50

Riemann fit 1 0.32 0.27 0.13 0.26

Riemann fit 2 0.32 0.27 0.32 0.26

Table 6 preliminary fit, e.g. to obtain a good reference

Layout of the forward type model detector track, the iteration can be skipped, and the
Layer Z (mm) ore (um)  ox (mm)  X/Xo Riemann fit is again competitive in terms of

execution time.

é Zzg H 8:8(2)2 8:83 The performance on the higher levels is shown
3 766 60 055 0.02 in Fig. 4. The correlations between the projections
4 896 60 0.55 0.02 (level 3) are now less important than before. There
5 1046 60 0.55 0.02 is very little difference between levels 1 and 2. At
6 1302 100 25.0 0.02 the very lowest pr the Riemann fit is slightly worse
; ii?i égg gg 8'35 than the other methods. The relative timing is
9 1647 625 120 0.02 shown in Table 8. The Riemann fit on level 1 is
10 1802 625 32.0 0.02 again slower than both the Kalman filter and the
11 1982 625 32.0 0.02 global fit, because of the need to iterate. The
12 2192 1000 33.0 0.02 absolute timing of the baseline is about 0.85 ms
13 2412 940 33.0 0.02

14 2652 860 33.0 0.02 per track.

The initial ¢ was set equal to the initial @. Multiple
scattering in the planes was simulated according to
the standard Highland formula [10]. Energy loss
was neglected.

3.2.3. Resolution and timing

Fig. 3 shows the performance on level O,
neglecting multiple scattering altogether. There is
close agreement between the three methods, the
Riemann fit being slightly better. The effect of
neglecting multiple scattering is much weaker than
in the barrel, because of the higher absolute
momenta of the tracks.

The execution times of the three methods are
shown in Table 7. The baseline is again the
Kalman filter on level 3. The Riemann fit is
now slower than the other methods, because it
needs to be iterated if full precision is required. If
the Riemann fit is intended only as a fast

3.3. Discussion

In a detector of the barrel type the Riemann fit
is a viable alternative to the Kalman filter and to
the global fit, especially if multiple scattering can
be neglected. It is faster than the Kalman filter in
the case of cylindrical detectors. As no derivative
matrices have to be computed the relative speed of
the Riemann fit can be expected to increase for
more complicated detector shapes. On the other
hand, it presupposes a perfect helical track model.
Its applicability is therefore confined to regions of
the detector where the field is sufficiently homo-
geneous. It is also unsuitable in cases of strong
energy loss. In a detector of the forward type the
Riemann fit suffers from the fact that it has to
be iterated in order to achieve full precision. As the
forward region of a colliding beam experiment
also tends to have less homogeneous magnetic field
than the central region, the Kalman filter is
probably the method of choice.



R. Frithwirth et al. | Nuclear Instruments and Methods in Physics Research A 490 (2002) 366-378 375

Plane detectors
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Fig. 3. Relative generalized variance of all methods on level 0, neglecting multiple scattering. The baseline is the Kalman filter on level

3, including multiple scattering.

Table 7

Relative timing of all methods on level 0

Method Level trel
Kalman filter 0 0.98
Global fit 0 1.23
Riemann fit 0 1.61

The baseline is the Kalman filter on level 3.

4. Implementation in C++

The C+ + implementation is heavily influenced
by the ORCA framework [12], although it can be
used as a standalone project. It handles both the
generation and the reconstruction of the tracks,
assuming only the pattern recognition problem to
be solved. The program is built on the CLHEP [13]
and the STL [14] libraries, with an optional GUI
using HepVis [15] and Motif [16]. The GUI
frontend is shown in Fig. 5.

The detector description as well as the ranges of
the initial values of the tracks are defined in two
separate configuration files, which—along with
almost twenty different command line options (see
Table 9)—allow for a very flexible usage of the
program.

4.1. Class design

Since prototyping had been done in MATLAB,
the paradigm shift from procedural MATLAB code
(““spaghetti code’) to the object orientedness of
C+ + demanded a strong emphasis on design
issues. The general layout we came up with is
depicted in Fig.6. As can be seen, a clear
separation was introduced between what we view
as the “physical data”, i.e. everything associated
with the detector and its elements, as well as the
particle hits, and the “mathematical description”
—the plane fitted by the RF, the state vectors and
their covariance matrices, and all manipulations
acting on these objects.

Only the Track class cannot be fit in any of
the categories; it somewhat resembles the ‘““synth-
esis” of the two. This class has as its member data
the hits and the covariance matrix; the fitting
algorithms are distinct member functions of this
class.

The Plane class is only a “‘helper class™ that has
as its member data the coefficients ¢ and n that
define a plane x - n 4+ ¢ = 0 in Euclidean space. Its
only member functions are transformations from
and to the plane class.
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Fig. 4. Relative generalized variance of all methods on levels above 0. The baseline is the Kalman filter on level 3.

Table 8

Relative timing of all methods on levels above 0

Method Level trel
Kalman filter 3 1.00
Global fit 1 1.42
Global fit 2 1.68
Global fit 3 1.70
Riemann fit 1 1.81
Riemann fit 2 2.17

The baseline is the Kalman filter on level 3.

Understanding and changing the C++ imple-
mentation should therefore be both easier and
less error-prone than in the MATLAB program.

4.2. Builds

We currently support the Linux and Solaris
platforms. Since the project is intended to be
both ORCA-related and standalone, two build
mechanisms are offered. The package is shipped
with a BuildFile, such that a compile from within
an ORCA install should be straightforward. For
the needs of a standalone install we also support a

configure/make mechanism. Note that the config-
ure is not a GNU autoconf script, but a simple
shell script that will ask a few questions. We did
not implement a GNU style autoconf mechanism,
mainly because the development environments in
the high-energy physics community are often
“non-GNUish”. The CLI binary has been success-
fully built and tested on (with the build mechanism
given in brackets):

Red Hat 6.1 (make, scram),
Red Hat 6.2 (make, scram),
Solaris 7 (make),
unstable  (sid)
(make).

Debian GNU/Linux 3.0

The GUI frontend has been successfully built
and tested on:

® Red Hat 6.2 (make),
® unstable (sid) Debian GNU/Linux 3.0 (make).

4.3. Availability

The code can be obtained from the authors on
request.
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Fig. 5. Snapshot of the GUI frontend.

Some command line options of the C++ programs

Operation:

-R, —riemann [levels]
-G, —global [levels]
-K, —kalman [levels]
Options:

-n, —ntracks [num]

-f, —detfile [file]

-1, —initfile [file]
-s, —seed [num]
-a, —scatter [0/1/2]
-m, —smear [0/1/2]
-p, —persistent

Output:

-c, —cms[=[pre]]
-d, —delphi[=[pre]]
-T, —timing

Riemann fit
Global fit
Kalman filter

Number of tracks to simulate
(default: 1)

Read detector configuration from
[file]

Read initial values from [file]

Set random seed to num

Scatter?

Smear?

Persistent storage of tracks? Needs
a lot of

memory per track, but allows for
precise timing

Write statistics (CMS coords)
Write statistics in Delphi coords
Show elapsed CPU times for
different code regions
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Fig. 6. The C++ class hierarchy, along with a few illustrating
methods.
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