

AUSTRIAN ACADEMY OF SCIENCES

# 



## **The PANDA Barrel Time-of-Flight Detector**

\*Sebastian Zimmermann, Stefan Meyer Institute Vienna, JLU Gießen K. Suzuki, D. Steinschaden, N. Kratochwil, W. Nalti, H. Orth, C. Schwarz, A. Lehmann, M. Böhm, K.-Th. Brinkmann

## FAIR

- Facility for Antiproton and Ion Research
- Under construction at Darmstadt, Germany
- FAIR will host multiple experiments with the four major experiments:

#### **APPA, CBM, NUSTAR and PANDA**



### **The Barrel Time of Flight Detector**

For an average rate of 20 MHz the time resolution of most PANDA overlap. For this reason the barrel shaped scintillating-tile hodoscope was designed.

deliver particle identification information using the time of flight of each particle, calculated from a single time stamp per particle with no dedicated start counter.

- 1.6 cm radial thickness
- Minimal material budget



- High Energy Storage Ring
- Beam momentum p = 1.5 15 GeV/c
- Employs electron and stochastic cooling
- Excellent momentum resolution:  $dp/p = 5 \times 10^{-5}$
- High luminosity  $L = 2 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$

## PANDA

- Antiproton **An**ihilation at **D**armstadt
- Fixed target (cluster-jet or pellet)
- Detector with almost  $4\pi$  coverage
- Colission rate of  $N_{avg} = 20 \text{ MHz}$
- Free flowing DAQ with continuous redout



#### **Scientific Progam:**

### **Signal Transmission**

The electric signals are generated at the SiPMs along the detector modules. These signals are transmitted to the Front-End Electronics (FEE) via a large Printed Circuit Board (PCB), where they will be digitized.

• Shilding ground layout changed

Amount of vias tested

attenuation measured

• Signal crosstalk and

#### **Transmission PCB:**

- 2460 x 180 x 20 mm<sup>3</sup>
- 16 layer design
- Micro stripline design
- 3 basic layouts tested

**PID Performance** 



#### Performance

Prototype test performed in Erlangen TDiff Resolution

# PHYSICS

- Charmonium and open-charm spectroscopy
- Exotic hadrons, hybrids and glueballs
- Hadrons in nuclear matter
- Hyperon physics



• Time resolution • Detected photons • Time difference left/right



- - Different scintillator materials and thicknesses were tested
  - An average time resolution of 51 ps was measured for the detectoracross the tile
  - Derived position resolution of 10 mm



#### References



- Separation power of p/K/π below the cherenkov threshold is important • We can use a relative TOF
- method to determine event start time (t<sub>0</sub>)
- Simulation done with ideal  $t_0$





